{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T17:52:16Z","timestamp":1725299536457},"reference-count":60,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,9,14]],"date-time":"2021-09-14T00:00:00Z","timestamp":1631577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,9,14]],"date-time":"2021-09-14T00:00:00Z","timestamp":1631577600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"crossref","award":["NRF-2019R1A2C1006159"],"id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Ambient Intell Human Comput"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1007\/s12652-021-03485-2","type":"journal-article","created":{"date-parts":[[2021,9,14]],"date-time":"2021-09-14T17:02:45Z","timestamp":1631638965000},"page":"3551-3565","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":18,"title":["Skin lesion classification in dermoscopic images using stacked Convolutional Neural Network"],"prefix":"10.1007","volume":"14","author":[{"given":"Ahmad","family":"Hameed","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6015-9326","authenticated-orcid":false,"given":"Muhammad","family":"Umer","sequence":"additional","affiliation":[]},{"given":"Umair","family":"Hafeez","sequence":"additional","affiliation":[]},{"given":"Hassan","family":"Mustafa","sequence":"additional","affiliation":[]},{"given":"Ahmed","family":"Sohaib","sequence":"additional","affiliation":[]},{"given":"Muhammad Abubakar","family":"Siddique","sequence":"additional","affiliation":[]},{"given":"Hamza Ahmad","family":"Madni","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,14]]},"reference":[{"key":"3485_CR1","doi-asserted-by":"publisher","first-page":"811","DOI":"10.1007\/s10462-020-09865-y","volume":"54","author":"A Adegun","year":"2021","unstructured":"Adegun A, Viriri S (2021) Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art. Artif Intell Rev 54:811\u2013841","journal-title":"Artif Intell Rev"},{"key":"3485_CR2","doi-asserted-by":"publisher","DOI":"10.1007\/s12652-018-1051-5","author":"T Akram","year":"2018","unstructured":"Akram T, Khan MA, Sharif M, Yasmin M (2018) Skin lesion segmentation and recognition using multichannel saliency estimation and m-svm on selected serially fused features. J Ambient Intell Human Comput. https:\/\/doi.org\/10.1007\/s12652-018-1051-5","journal-title":"J Ambient Intell Human Comput"},{"issue":"7793","key":"3485_CR3","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1038\/s41586-020-1943-3","volume":"578","author":"LB Alexandrov","year":"2020","unstructured":"Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN et al (2020) The repertoire of mutational signatures in human cancer. Nature 578(7793):94\u2013101","journal-title":"Nature"},{"key":"3485_CR4","doi-asserted-by":"crossref","unstructured":"Ali ARA, Deserno TM (2012) A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data. In: Medical Imaging 2012: Image Perception, Observer Performance, and Technology Assessment, International Society for Optics and Photonics, vol 8318, p 83181I","DOI":"10.1117\/12.912389"},{"issue":"7","key":"3485_CR5","doi-asserted-by":"publisher","first-page":"443","DOI":"10.1016\/S1470-2045(00)00422-8","volume":"2","author":"G Argenziano","year":"2001","unstructured":"Argenziano G, Soyer HP (2001) Dermoscopy of pigmented skin lesions-a valuable tool for early. Lancet Oncol 2(7):443\u2013449","journal-title":"Lancet Oncol"},{"key":"3485_CR6","doi-asserted-by":"publisher","first-page":"102358","DOI":"10.1016\/j.bspc.2020.102358","volume":"65","author":"R Arora","year":"2021","unstructured":"Arora R, Raman B, Nayyar K, Awasthi R (2021) Automated skin lesion segmentation using attention-based deep convolutional neural network. Biomed Signal Process Control 65:102358. https:\/\/doi.org\/10.1016\/j.bspc.2020.102358","journal-title":"Biomed Signal Process Control"},{"issue":"2","key":"3485_CR7","doi-asserted-by":"publisher","first-page":"102","DOI":"10.3390\/diagnostics10020102","volume":"10","author":"SE Bachert","year":"2020","unstructured":"Bachert SE, McDowell A, Piecoro D, Baldwin Branch L (2020) Serous tubal intraepithelial carcinoma: a concise review for the practicing pathologist and clinician. Diagnostics 10(2):102","journal-title":"Diagnostics"},{"issue":"5","key":"3485_CR8","doi-asserted-by":"publisher","first-page":"513","DOI":"10.2174\/1573405615666190129120449","volume":"16","author":"R Baig","year":"2020","unstructured":"Baig R, Bibi M, Hamid A, Kausar S, Khalid S (2020) Deep learning approaches towards skin lesion segmentation and classification from dermoscopic images\u2014a review. Curr Med Imaging 16(5):513\u2013533","journal-title":"Curr Med Imaging"},{"key":"3485_CR9","doi-asserted-by":"publisher","DOI":"10.1159\/000511188","author":"S Bergeron","year":"2020","unstructured":"Bergeron S, Arthurs B, Sanft D, Mastromonaco C, Burnier M Jr (2020) Optical coherence tomography of peri-ocular skin cancers: an optical biopsy. Ocular Oncol Pathol. https:\/\/doi.org\/10.1159\/000511188","journal-title":"Ocular Oncol Pathol"},{"key":"3485_CR10","unstructured":"Bissoto A, Perez F, Ribeiro V, Fornaciali M, Avila S, Valle E (2018) Deep-learning ensembles for skin-lesion segmentation, analysis, classification: Recod titans at isic challenge 2018. arXiv preprint arXiv:180808480"},{"key":"3485_CR11","doi-asserted-by":"publisher","unstructured":"Christlein V, Spranger L, Seuret M, Nicolaou A, Kral P, Maier A (2019) Deep generalized max pooling. In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, https:\/\/doi.org\/10.1109\/ICDAR.2019.00177","DOI":"10.1109\/ICDAR.2019.00177"},{"issue":"4\/5","key":"3485_CR12","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1147\/JRD.2017.2708299","volume":"61","author":"NC Codella","year":"2017","unstructured":"Codella NC, Nguyen QB, Pankanti S, Gutman DA, Helba B, Halpern AC, Smith JR (2017) Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev 61(4\/5):5\u20131","journal-title":"IBM J Res Dev"},{"key":"3485_CR13","doi-asserted-by":"crossref","unstructured":"Codella N, Cai J, Abedini M, Garnavi R, Halpern A, Smith JR (2015) Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In: International workshop on machine learning in medical imaging, Springer, pp 118\u2013126","DOI":"10.1007\/978-3-319-24888-2_15"},{"key":"3485_CR14","unstructured":"Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M, et\u00a0al. (2019) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv preprint arXiv:190203368"},{"key":"3485_CR15","doi-asserted-by":"publisher","DOI":"10.1007\/s12652-020-02675-8","author":"C Dhivyaa","year":"2020","unstructured":"Dhivyaa C, Sangeetha K, Balamurugan M, Amaran S, Vetriselvi T, Johnpaul P (2020) Skin lesion classification using decision trees and random forest algorithms. J Ambient Intell Human Comput. https:\/\/doi.org\/10.1007\/s12652-020-02675-8","journal-title":"J Ambient Intell Human Comput"},{"issue":"1","key":"3485_CR16","doi-asserted-by":"publisher","first-page":"593","DOI":"10.1111\/nph.16882","volume":"229","author":"S Dunker","year":"2021","unstructured":"Dunker S, Motivans E, Rakosy D, Boho D, M\u00e4der P, Hornick T, Knight TM (2021) Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytol 229(1):593\u2013606","journal-title":"New Phytol"},{"key":"3485_CR17","doi-asserted-by":"publisher","first-page":"632","DOI":"10.3844\/jcssp.2014.632.639","volume":"10","author":"N El Abbadi","year":"2014","unstructured":"El Abbadi N (2014) Automatic segmentation of skin lesions using histogram thresholding. J Comput Sci 10:632\u2013639. https:\/\/doi.org\/10.3844\/jcssp.2014.632.639","journal-title":"J Comput Sci"},{"key":"3485_CR18","doi-asserted-by":"publisher","first-page":"6307","DOI":"10.1007\/s00521-020-05396-3","volume":"33","author":"A Farahani","year":"2021","unstructured":"Farahani A, Mohseni H (2021) Medical image segmentation using customized u-net with adaptive activation functions. Neural Comput Appl 33:6307\u20136323","journal-title":"Neural Comput Appl"},{"issue":"2","key":"3485_CR19","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1034\/j.1600-0846.2003.00030.x","volume":"9","author":"Y Faziloglu","year":"2003","unstructured":"Faziloglu Y, Stanley RJ, Moss RH, Van Stoecker W, McLean RP (2003) Colour histogram analysis for melanoma discrimination in clinical images. Skin Res Technol 9(2):147\u2013156","journal-title":"Skin Res Technol"},{"issue":"4","key":"3485_CR20","doi-asserted-by":"publisher","first-page":"706","DOI":"10.1111\/j.0007-0963.2004.05892.x","volume":"150","author":"NE Feit","year":"2004","unstructured":"Feit NE, Dusza SW, Marghoob AA (2004) Melanomas detected with the aid of total cutaneous photography. Br J Dermatol 150(4):706\u2013714","journal-title":"Br J Dermatol"},{"issue":"4","key":"3485_CR21","doi-asserted-by":"publisher","first-page":"1011","DOI":"10.3390\/metabo3041011","volume":"3","author":"J Feng","year":"2013","unstructured":"Feng J, Isern NG, Burton SD, Hu JZ (2013) Studies of secondary melanoma on c57bl\/6j mouse liver using 1h nmr metabolomics. Metabolites 3(4):1011\u20131035","journal-title":"Metabolites"},{"key":"3485_CR22","doi-asserted-by":"publisher","unstructured":"Gallego G, Gehrig M, Scaramuzza D (2019) Focus is all you need: Loss functions for event-based vision. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, https:\/\/doi.org\/10.1109\/CVPR.2019.01256","DOI":"10.1109\/CVPR.2019.01256"},{"key":"3485_CR23","doi-asserted-by":"crossref","unstructured":"Garg S, Jindal B (2020) Skin lesion segmentation using k-mean and optimized fire fly algorithm. Multimed Tools Appl 1\u201314","DOI":"10.1007\/s11042-020-10064-8"},{"key":"3485_CR24","doi-asserted-by":"crossref","unstructured":"Garg R, Maheshwari S, Shukla A (2021) Decision support system for detection and classification of skin cancer using CNN. In: Innovations in Computational Intelligence and Computer Vision, Springer, pp 578\u2013586","DOI":"10.1007\/978-981-15-6067-5_65"},{"issue":"1","key":"3485_CR25","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1007\/s13721-019-0209-1","volume":"9","author":"R Javed","year":"2020","unstructured":"Javed R, Rahim MSM, Saba T, Rehman A (2020) A comparative study of features selection for skin lesion detection from dermoscopic images. Netw Model Anal Health Inform Bioinform 9(1):4","journal-title":"Netw Model Anal Health Inform Bioinform"},{"key":"3485_CR26","doi-asserted-by":"crossref","unstructured":"Jha D, Riegler MA, Johansen D, Halvorsen P, Johansen HD (2020) Doubleu-net: A deep convolutional neural network for medical image segmentation. arXiv preprint arXiv:200604868","DOI":"10.1109\/CBMS49503.2020.00111"},{"key":"3485_CR27","doi-asserted-by":"publisher","DOI":"10.29220\/CSAM.2019.26.6.591","author":"H Lee","year":"2019","unstructured":"Lee H, Song J (2019) Introduction to convolutional neural network using Keras; an understanding from a statistician. Commun Stat Appl Methods. https:\/\/doi.org\/10.29220\/CSAM.2019.26.6.591","journal-title":"Commun Stat Appl Methods"},{"key":"3485_CR28","doi-asserted-by":"crossref","unstructured":"Lin BS, Michael K, Kalra S, Tizhoosh HR (2017) Skin lesion segmentation: U-nets versus clustering. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp 1\u20137","DOI":"10.1109\/SSCI.2017.8280804"},{"issue":"1","key":"3485_CR29","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-66926-6","volume":"10","author":"A Lozano","year":"2020","unstructured":"Lozano A, Hayes JC, Compton LM, Azarnoosh J, Hassanipour F (2020) Determining the thermal characteristics of breast cancer based on high-resolution infrared imaging, 3d breast scans, and magnetic resonance imaging. Sci Rep 10(1):1\u201314","journal-title":"Sci Rep"},{"key":"3485_CR30","doi-asserted-by":"publisher","DOI":"10.1155\/2020\/8843664","author":"AK Mishra","year":"2020","unstructured":"Mishra AK, Das SK, Roy P, Bandyopadhyay S (2020) Identifying COVID19 from chest CT images: a Deep Convolutional Neural Networks based approach. J Healthcare Eng. https:\/\/doi.org\/10.1155\/2020\/8843664","journal-title":"J Healthcare Eng"},{"key":"3485_CR31","doi-asserted-by":"publisher","unstructured":"Nam H, Han B (2016) Learning multi-domain Convolutional Neural Networks for visual tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https:\/\/doi.org\/10.1109\/CVPR.2016.465","DOI":"10.1109\/CVPR.2016.465"},{"issue":"2","key":"3485_CR32","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1097\/00008390-200204000-00009","volume":"12","author":"K Nehal","year":"2002","unstructured":"Nehal K, Oliveria S, Marghoob A, Christos P, Dusza S, Tromberg J, Halpern A (2002) Use of and beliefs about baseline photography in the management of patients with pigmented lesions: a survey of dermatology residency programmes in the united states. Melanoma Res 12(2):161\u2013167","journal-title":"Melanoma Res"},{"key":"3485_CR33","doi-asserted-by":"crossref","unstructured":"Nisar H, Ch\u2019ng YK, Ho YK (2020) Automatic segmentation and classification of eczema skin lesions using supervised learning. In: 2020 IEEE Conference on Open Systems (ICOS), IEEE, pp 25\u201330","DOI":"10.1109\/ICOS50156.2020.9293657"},{"key":"3485_CR34","doi-asserted-by":"crossref","unstructured":"Pai K, Giridharan A (2019) Convolutional neural networks for classifying skin lesions. In: TENCON 2019-2019 IEEE Region 10 Conference (TENCON), IEEE, pp 1794\u20131796","DOI":"10.1109\/TENCON.2019.8929461"},{"issue":"5","key":"3485_CR35","doi-asserted-by":"publisher","first-page":"367","DOI":"10.1002\/lsm.10125","volume":"31","author":"M Panjehpour","year":"2002","unstructured":"Panjehpour M, Julius CE, Phan MN, Vo-Dinh T, Overholt S (2002) Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers. Lasers Surg Med 31(5):367\u2013373","journal-title":"Lasers Surg Med"},{"issue":"3","key":"3485_CR36","doi-asserted-by":"publisher","first-page":"222","DOI":"10.1016\/S0738-081X(02)00231-6","volume":"20","author":"G Pellacani","year":"2002","unstructured":"Pellacani G, Seidenari S (2002) Comparison between morphological parameters in pigmented skin lesion images acquired by means of epiluminescence surface microscopy and polarized-light videomicroscopy. Clin Dermatol 20(3):222\u2013227","journal-title":"Clin Dermatol"},{"issue":"2","key":"3485_CR37","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1097\/00008390-200404000-00008","volume":"14","author":"G Pellacani","year":"2004","unstructured":"Pellacani G, Grana C, Seidenari S (2004) Automated description of colours in polarized-light surface microscopy images of melanocytic lesions. Melanoma Res 14(2):125\u2013130","journal-title":"Melanoma Res"},{"key":"3485_CR38","doi-asserted-by":"publisher","first-page":"113129","DOI":"10.1016\/j.eswa.2019.113129","volume":"144","author":"MP Pour","year":"2020","unstructured":"Pour MP, Seker H (2020) Transform domain representation-driven convolutional neural networks for skin lesion segmentation. Expert Syst Appl 144:113129","journal-title":"Expert Syst Appl"},{"issue":"7","key":"3485_CR39","doi-asserted-by":"publisher","first-page":"781","DOI":"10.2174\/1573405616666200129095242","volume":"16","author":"N Razmjooy","year":"2020","unstructured":"Razmjooy N, Ashourian M, Karimifard M, Estrela VV, Loschi HJ, do\u00a0Nascimento D, Fran\u00e7a RP, Vishnevski M (2020) Computer-aided diagnosis of skin cancer: a review. Curr Med Imaging 16(7):781\u2013793","journal-title":"Curr Med Imaging"},{"issue":"8","key":"3485_CR40","doi-asserted-by":"publisher","first-page":"e346","DOI":"10.1111\/jdv.16533","volume":"34","author":"S Recalcati","year":"2020","unstructured":"Recalcati S, Barbagallo T, Frasin L, Prestinari F, Cogliardi A, Provero M, Dainese E, Vanzati A, Fantini F (2020) Acral cutaneous lesions in the time of COVID-19. J Eur Acad Dermatol Venereol 34(8):e346\u2013e347","journal-title":"J Eur Acad Dermatol Venereol"},{"issue":"5","key":"3485_CR41","doi-asserted-by":"publisher","first-page":"1441","DOI":"10.3390\/s18051441","volume":"18","author":"L Rey-Barroso","year":"2018","unstructured":"Rey-Barroso L, Burgos-Fern\u00e1ndez FJ, Delpueyo X, Ares M, Royo S, Malvehy J, Puig S, Vilaseca M (2018) Visible and extended near-infrared multispectral imaging for skin cancer diagnosis. Sensors 18(5):1441","journal-title":"Sensors"},{"issue":"2","key":"3485_CR42","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1016\/j.acra.2013.11.013","volume":"21","author":"DJ Rohrbach","year":"2014","unstructured":"Rohrbach DJ, Muffoletto D, Huihui J, Saager R, Keymel K, Paquette A, Morgan J, Zeitouni N, Sunar U (2014) Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging. Acad Radiol 21(2):263\u2013270","journal-title":"Acad Radiol"},{"issue":"10","key":"3485_CR43","doi-asserted-by":"publisher","first-page":"891","DOI":"10.1016\/j.adengl.2014.10.002","volume":"105","author":"FA Rold\u00e1n","year":"2014","unstructured":"Rold\u00e1n FA (2014) Ultrasound skin imaging. Actas Dermo-Sifiliogr\u00e1ficas (English Edition) 105(10):891\u2013899","journal-title":"Actas Dermo-Sifiliogr\u00e1ficas (English Edition)"},{"issue":"3","key":"3485_CR44","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1111\/cod.13714","volume":"84","author":"C Ruini","year":"2021","unstructured":"Ruini C, Rahimi F, Fiocco Z, French LE, Hartmann D, Oppel E, Sattler E (2021a) Optical coherence tomography for patch test grading: a prospective study on its use for noninvasive diagnosis of allergic contact dermatitis. Contact Dermatitis 84(3):183\u2013191","journal-title":"Contact Dermatitis"},{"issue":"3","key":"3485_CR45","doi-asserted-by":"publisher","first-page":"340","DOI":"10.1111\/srt.12949","volume":"27","author":"C Ruini","year":"2021","unstructured":"Ruini C, Schuh S, Sattler E, Welzel J (2021b) Line-field confocal optical coherence tomography\u2013practical applications in dermatology and comparison with established imaging methods. Skin Res Technol 27(3):340\u2013352","journal-title":"Skin Res Technol"},{"issue":"2","key":"3485_CR46","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1016\/j.compmedimag.2010.07.002","volume":"35","author":"M Sadeghi","year":"2011","unstructured":"Sadeghi M, Razmara M, Lee TK, Atkins MS (2011) A novel method for detection of pigment network in dermoscopic images using graphs. Comput Med Imaging Graph 35(2):137\u2013143","journal-title":"Comput Med Imaging Graph"},{"issue":"7","key":"3485_CR47","doi-asserted-by":"publisher","first-page":"1839","DOI":"10.1109\/TIM.2012.2192349","volume":"61","author":"G Sforza","year":"2012","unstructured":"Sforza G, Castellano G, Arika SK, LeAnder RW, Stanley RJ, Stoecker WV, Hagerty JR (2012) Using adaptive thresholding and skewness correction to detect gray areas in melanoma in situ images. IEEE Trans Instrum Meas 61(7):1839\u20131847","journal-title":"IEEE Trans Instrum Meas"},{"issue":"1","key":"3485_CR48","doi-asserted-by":"publisher","first-page":"7","DOI":"10.3322\/caac.21551","volume":"69","author":"RL Siegel","year":"2019","unstructured":"Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. Cancer J Clin 69(1):7\u201334","journal-title":"Cancer J Clin"},{"issue":"3","key":"3485_CR49","doi-asserted-by":"publisher","first-page":"3245","DOI":"10.1007\/s12652-020-02537-3","volume":"12","author":"MY Sikkandar","year":"2021","unstructured":"Sikkandar MY, Alrasheadi BA, Prakash N, Hemalakshmi G, Mohanarathinam A, Shankar K (2021) Deep learning based an automated skin lesion segmentation and intelligent classification model. J Ambient Intell Human Comput 12(3):3245\u20133255","journal-title":"J Ambient Intell Human Comput"},{"issue":"3","key":"3485_CR50","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1111\/j.1600-0846.2005.00117.x","volume":"11","author":"WV Stoecker","year":"2005","unstructured":"Stoecker WV, Gupta K, Stanley RJ, Moss RH, Shrestha B (2005) Detection of asymmetric blotches (asymmetric structureless areas) in dermoscopy images of malignant melanoma using relative color. Skin Res Technol 11(3):179\u2013184","journal-title":"Skin Res Technol"},{"key":"3485_CR51","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1016\/j.procs.2015.03.090","volume":"45","author":"R Sumithra","year":"2015","unstructured":"Sumithra R, Suhil M, Guru D (2015) Segmentation and classification of skin lesions for disease diagnosis. Procedia Comput Sci 45:76\u201385","journal-title":"Procedia Comput Sci"},{"key":"3485_CR52","doi-asserted-by":"publisher","first-page":"366","DOI":"10.1080\/15398285.2012.701177","volume":"16","author":"T Tarver","year":"2012","unstructured":"Tarver T (2012) American cancer society. Cancer facts and figures 2014. J Consumer Health Internet 16:366\u2013367","journal-title":"J Consumer Health Internet"},{"issue":"4","key":"3485_CR53","doi-asserted-by":"publisher","first-page":"284","DOI":"10.3322\/caac.21456","volume":"68","author":"LA Torre","year":"2018","unstructured":"Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL (2018) Ovarian cancer statistics, 2018. Cancer J Clin 68(4):284\u2013296","journal-title":"Cancer J Clin"},{"key":"3485_CR54","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1016\/j.patrec.2017.11.005","volume":"139","author":"CN Vasconcelos","year":"2020","unstructured":"Vasconcelos CN, Vasconcelos BN (2020) Experiments using deep learning for dermoscopy image analysis. Pattern Recogn Lett 139:95\u2013103","journal-title":"Pattern Recogn Lett"},{"issue":"1","key":"3485_CR55","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12957-019-1558-z","volume":"17","author":"L Wang","year":"2019","unstructured":"Wang L, Yang S, Yang S, Zhao C, Tian G, Gao Y, Chen Y, Lu Y (2019) Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the yolov2 neural network. World J Surg Oncol 17(1):1\u20139","journal-title":"World J Surg Oncol"},{"issue":"4","key":"3485_CR56","doi-asserted-by":"publisher","first-page":"695","DOI":"10.1016\/S0733-8635(18)30374-7","volume":"9","author":"R White","year":"1991","unstructured":"White R, Rigel DS, Friedman RJ (1991) Computer applications in the diagnosis and prognosis of malignant melanoma. Dermatol Clin 9(4):695\u2013702","journal-title":"Dermatol Clin"},{"key":"3485_CR57","doi-asserted-by":"publisher","first-page":"105241","DOI":"10.1016\/j.cmpb.2019.105241","volume":"186","author":"F Xie","year":"2020","unstructured":"Xie F, Yang J, Liu J, Jiang Z, Zheng Y, Wang Y (2020) Skin lesion segmentation using high-resolution convolutional neural network. Comput Methods Programs Biomed 186:105241","journal-title":"Comput Methods Programs Biomed"},{"key":"3485_CR58","doi-asserted-by":"publisher","first-page":"6286","DOI":"10.1109\/ACCESS.2020.3047831","volume":"9","author":"A Yousaf","year":"2021","unstructured":"Yousaf A, Umer M, Sadiq S, Ullah S, Mirjalili S, Rupapara V, Nappi M (2021) Emotion recognition by textual tweets classification using voting classifier (lr-sgd). IEEE Access 9:6286\u20136295. https:\/\/doi.org\/10.1109\/ACCESS.2020.3047831","journal-title":"IEEE Access"},{"key":"3485_CR59","doi-asserted-by":"crossref","unstructured":"Yuan Y (2017) Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv preprint arXiv:170305165","DOI":"10.1109\/TMI.2017.2695227"},{"key":"3485_CR60","doi-asserted-by":"publisher","first-page":"680","DOI":"10.3389\/fonc.2020.00680","volume":"10","author":"S Zhen","year":"2020","unstructured":"Zhen S, Cheng M, Yb T, Yf W, Juengpanich S, Zy J, Yk J, Yan Yy LW, Jm L et al (2020) Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Front Oncol 10:680","journal-title":"Front Oncol"}],"container-title":["Journal of Ambient Intelligence and Humanized Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-021-03485-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12652-021-03485-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-021-03485-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,28]],"date-time":"2023-03-28T12:52:59Z","timestamp":1680007979000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12652-021-03485-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,14]]},"references-count":60,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,4]]}},"alternative-id":["3485"],"URL":"https:\/\/doi.org\/10.1007\/s12652-021-03485-2","relation":{},"ISSN":["1868-5137","1868-5145"],"issn-type":[{"value":"1868-5137","type":"print"},{"value":"1868-5145","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,9,14]]},"assertion":[{"value":"12 January 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"31 August 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 September 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}