{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T01:06:10Z","timestamp":1724979970991},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,8,22]],"date-time":"2021-08-22T00:00:00Z","timestamp":1629590400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,8,22]],"date-time":"2021-08-22T00:00:00Z","timestamp":1629590400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Ambient Intell Human Comput"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1007\/s12652-021-03440-1","type":"journal-article","created":{"date-parts":[[2021,8,22]],"date-time":"2021-08-22T09:02:25Z","timestamp":1629622945000},"page":"3145-3155","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["DPD-DS for plant disease detection based on instance segmentation"],"prefix":"10.1007","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5720-5459","authenticated-orcid":false,"given":"Ramanadham","family":"Kavitha Lakshmi","sequence":"first","affiliation":[]},{"given":"Nickolas","family":"Savarimuthu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,8,22]]},"reference":[{"issue":"1","key":"3440_CR1","doi-asserted-by":"publisher","first-page":"660","DOI":"10.1186\/2193-1801-2-660","volume":"2","author":"JGA Barbedo","year":"2013","unstructured":"Barbedo JGA (2013) Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus 2(1):660. https:\/\/doi.org\/10.1186\/2193-1801-2-660","journal-title":"SpringerPlus"},{"key":"3440_CR2","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1016\/j.biosystemseng.2016.01.017","volume":"144","author":"JGA Barbedo","year":"2016","unstructured":"Barbedo JGA (2016) A review on the main challenges in automatic plant disease identification based on visible range images. Biosyst Eng 144:52\u201360. https:\/\/doi.org\/10.1016\/j.biosystemseng.2016.01.017","journal-title":"Biosyst Eng"},{"key":"3440_CR3","doi-asserted-by":"publisher","DOI":"10.1007\/s12652-020-01865-8","author":"SK Behera","year":"2020","unstructured":"Behera SK, Rath AK, Mahapatra A, Sethy PK (2020) Identification, classification & grading of fruits using machine learning & computer intelligence: a review. J Ambient Intell Humaniz Comput. https:\/\/doi.org\/10.1007\/s12652-020-01865-8","journal-title":"J Ambient Intell Humaniz Comput"},{"issue":"2","key":"3440_CR4","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1080\/07352681003617285","volume":"29","author":"C Bock","year":"2010","unstructured":"Bock C, Poole G, Parker P, Gottwald T (2010) Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 29(2):59\u2013107. https:\/\/doi.org\/10.1080\/07352681003617285","journal-title":"Crit Rev Plant Sci"},{"issue":"1","key":"3440_CR5","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1016\/j.aquabot.2007.08.016","volume":"88","author":"BL Boese","year":"2008","unstructured":"Boese BL, Clinton PJ, Dennis D, Golden RC, Kim B (2008) Digital image analysis of zostera marina leaf injury. Aquat Bot 88(1):87\u201390. https:\/\/doi.org\/10.1016\/j.aquabot.2007.08.016","journal-title":"Aquat Bot"},{"key":"3440_CR6","unstructured":"Bowen C, Elliott VJ, Eversmeyer MG, Charles S, Johnson KBJ, David R, MacKenzie WLP, Roelfs AP, Royer MH (1991) Disease assessment terms and concepts. Plant Dis 1187"},{"issue":"1","key":"3440_CR7","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1186\/s12862-017-1014-z","volume":"17","author":"J Carranza-Rojas","year":"2017","unstructured":"Carranza-Rojas J, Goeau H, Bonnet P, Mata-Montero E, Joly A (2017) Going deeper in the automated identification of herbarium specimens. BMC Evolut Biol 17(1):181. https:\/\/doi.org\/10.1186\/s12862-017-1014-z","journal-title":"BMC Evolut Biol"},{"key":"3440_CR8","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1016\/j.compag.2018.01.009","volume":"145","author":"KP Ferentinos","year":"2018","unstructured":"Ferentinos KP (2018) Deep learning models for plant disease detection and diagnosis. Comput Electron Agric 145:311\u2013318. https:\/\/doi.org\/10.1016\/j.compag.2018.01.009","journal-title":"Comput Electron Agric"},{"key":"3440_CR9","doi-asserted-by":"crossref","unstructured":"Girshick R (2015) Fast r-cnn, pp 1440\u20131448","DOI":"10.1109\/ICCV.2015.169"},{"key":"3440_CR10","doi-asserted-by":"publisher","unstructured":"Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation, pp 580\u2013587. https:\/\/doi.org\/10.1109\/cvpr.2014.81","DOI":"10.1109\/cvpr.2014.81"},{"key":"3440_CR11","doi-asserted-by":"publisher","first-page":"418","DOI":"10.1016\/j.compag.2016.07.003","volume":"127","author":"GL Grinblat","year":"2016","unstructured":"Grinblat GL, Uzal LC, Larese MG, Granitto PM (2016) Deep learning for plant identification using vein morphological patterns. Comput Electron Agric 127:418\u2013424. https:\/\/doi.org\/10.1016\/j.compag.2016.07.003","journal-title":"Comput Electron Agric"},{"issue":"9","key":"3440_CR12","doi-asserted-by":"publisher","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","volume":"37","author":"K He","year":"2015","unstructured":"He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904\u20131916. https:\/\/doi.org\/10.1109\/TPAMI.2015.2389824","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"3440_CR13","doi-asserted-by":"crossref","unstructured":"He K, Gkioxari G, Doll\u00e1r P, Girshick R (2017) Mask r-cnn, pp 2961\u20132969","DOI":"10.1109\/ICCV.2017.322"},{"key":"3440_CR14","doi-asserted-by":"publisher","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition, pp 770\u2013778. https:\/\/doi.org\/10.1109\/cvpr.2016.90","DOI":"10.1109\/cvpr.2016.90"},{"issue":"7553","key":"3440_CR15","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436\u2013444. https:\/\/doi.org\/10.1038\/nature14539","journal-title":"Nature"},{"key":"3440_CR16","doi-asserted-by":"publisher","unstructured":"Lee SH, Chan CS, Wilkin P, Remagnino P (2015) Deep-plant: plant identification with convolutional neural networks, pp 452\u2013456. https:\/\/doi.org\/10.1109\/icip.2015.7350839","DOI":"10.1109\/icip.2015.7350839"},{"key":"3440_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.patcog.2017.05.015","volume":"71","author":"SH Lee","year":"2017","unstructured":"Lee SH, Chan CS, Mayo SJ, Remagnino P (2017) How deep learning extracts and learns leaf features for plant classification. Pattern Recognit 71:1\u201313. https:\/\/doi.org\/10.1016\/j.patcog.2017.05.015","journal-title":"Pattern Recognit"},{"issue":"8","key":"3440_CR18","doi-asserted-by":"publisher","first-page":"2674","DOI":"10.3390\/s18082674","volume":"18","author":"KG Liakos","year":"2018","unstructured":"Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D (2018) Machine learning in agriculture: a review. Sensors 18(8):2674. https:\/\/doi.org\/10.3390\/s18082674","journal-title":"Sensors"},{"key":"3440_CR19","doi-asserted-by":"crossref","unstructured":"Lin TY, Doll\u00e1r P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection, pp 2117\u20132125","DOI":"10.1109\/CVPR.2017.106"},{"issue":"1","key":"3440_CR20","doi-asserted-by":"publisher","first-page":"11","DOI":"10.3390\/sym10010011","volume":"10","author":"B Liu","year":"2018","unstructured":"Liu B, Zhang Y, He D, Li Y (2018) Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 10(1):11. https:\/\/doi.org\/10.3390\/sym10010011","journal-title":"Symmetry"},{"key":"3440_CR21","doi-asserted-by":"crossref","unstructured":"Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox detector, pp 21\u201337","DOI":"10.1007\/978-3-319-46448-0_2"},{"issue":"1","key":"3440_CR22","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1007\/s10658-011-9878-z","volume":"133","author":"AK Mahlein","year":"2012","unstructured":"Mahlein AK, Oerke EC, Steiner U, Dehne HW (2012) Recent advances in sensing plant diseases for precision crop protection. Eur J Plant Pathol 133(1):197\u2013209. https:\/\/doi.org\/10.1007\/s10658-011-9878-z","journal-title":"Eur J Plant Pathol"},{"key":"3440_CR23","doi-asserted-by":"publisher","first-page":"1419","DOI":"10.3389\/fpls.2016.01419","volume":"7","author":"SP Mohanty","year":"2016","unstructured":"Mohanty SP, Hughes DP, Salath\u00e9 M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1419. https:\/\/doi.org\/10.3389\/fpls.2016.01419","journal-title":"Front Plant Sci"},{"key":"3440_CR24","doi-asserted-by":"publisher","DOI":"10.1007\/s12652-020-02505-x","author":"Y Nanehkaran","year":"2020","unstructured":"Nanehkaran Y, Zhang D, Chen J, Tian Y, Al-Nabhan N (2020) Recognition of plant leaf diseases based on computer vision. J Ambient Intell Humaniz Comput. https:\/\/doi.org\/10.1007\/s12652-020-02505-x","journal-title":"J Ambient Intell Humaniz Comput"},{"issue":"5","key":"3440_CR25","first-page":"297","volume":"3","author":"SB Patil","year":"2011","unstructured":"Patil SB, Bodhe SK (2011) Leaf disease severity measurement using image processing. Int J Eng Technol 3(5):297\u2013301","journal-title":"Int J Eng Technol"},{"issue":"3","key":"3440_CR26","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1080\/07352689009382289","volume":"9","author":"T Price","year":"1990","unstructured":"Price T, Osborne C (1990) Computer imaging and its application to some problems in agriculture and plant science. Crit Rev Plant Sci 9(3):235\u2013266. https:\/\/doi.org\/10.1080\/07352689009382289","journal-title":"Crit Rev Plant Sci"},{"key":"3440_CR27","doi-asserted-by":"publisher","unstructured":"Priya CA, Balasaravanan T, Thanamani AS (2012) An efficient leaf recognition algorithm for plant classification using support vector machine. In: International conference on pattern recognition, informatics and medical engineering (PRIME-2012), IEEE, pp 428\u2013432. https:\/\/doi.org\/10.1109\/icprime.2012.6208384","DOI":"10.1109\/icprime.2012.6208384"},{"key":"3440_CR28","unstructured":"Ramachandran P, Zoph B, Le QV (2017) Searching for activation functions. arXiv:1710.05941"},{"key":"3440_CR29","doi-asserted-by":"crossref","unstructured":"Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection, pp 779\u2013788","DOI":"10.1109\/CVPR.2016.91"},{"key":"3440_CR30","unstructured":"Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:1804.02767"},{"key":"3440_CR31","unstructured":"Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp 91\u201399"},{"issue":"5","key":"3440_CR32","first-page":"1709","volume":"2","author":"SS Sannakki","year":"2011","unstructured":"Sannakki SS, Rajpurohit VS, Nargund V, Kumar A, Yallur PS (2011) Leaf disease grading by machine vision and fuzzy logic. Int J 2(5):1709\u20131716","journal-title":"Int J"},{"issue":"4","key":"3440_CR33","doi-asserted-by":"publisher","first-page":"585","DOI":"10.1007\/s00138-015-0737-3","volume":"27","author":"H Scharr","year":"2016","unstructured":"Scharr H, Minervini M, French AP, Klukas C, Kramer DM, Liu X, Luengo I, Pape JM, Polder G, Vukadinovic D et al (2016) Leaf segmentation in plant phenotyping: a collation study. Mach Vis Appl 27(4):585\u2013606. https:\/\/doi.org\/10.1007\/s00138-015-0737-3","journal-title":"Mach Vis Appl"},{"key":"3440_CR34","unstructured":"Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229"},{"key":"3440_CR35","unstructured":"Siddharth SC, Singh UP, Kaul A, Jain S (2019) A database of leaf images: practice towards plant conservation with plant pathology. http:\/\/data.mendeley.com\/datasets\/hb74ynkjcn\/1"},{"key":"3440_CR36","doi-asserted-by":"publisher","first-page":"43721","DOI":"10.1109\/access.2019.2907383","volume":"7","author":"UP Singh","year":"2019","unstructured":"Singh UP, Chouhan SS, Jain S, Jain S (2019) Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease. IEEE Access 7:43721\u201343729. https:\/\/doi.org\/10.1109\/access.2019.2907383","journal-title":"IEEE Access"},{"key":"3440_CR37","doi-asserted-by":"publisher","unstructured":"Weizheng S, Yachun W, Zhanliang C, Hongda W (2008) Grading method of leaf spot disease based on image processing. In: 2008 international conference on computer science and software engineering, IEEE, vol\u00a06, pp 491\u2013494. https:\/\/doi.org\/10.1109\/csse.2008.1649","DOI":"10.1109\/csse.2008.1649"},{"issue":"1","key":"3440_CR38","doi-asserted-by":"publisher","first-page":"6","DOI":"10.18088\/ejbmr.3.1.2017.pp6-9","volume":"3","author":"X Yang","year":"2017","unstructured":"Yang X, Guo T (2017) Machine learning in plant disease research. Eur J Biomed Res 3(1):6\u20139. https:\/\/doi.org\/10.18088\/ejbmr.3.1.2017.pp6-9","journal-title":"Eur J Biomed Res"},{"key":"3440_CR39","doi-asserted-by":"publisher","unstructured":"Zawbaa HM, Hazman M, Abbass M, Hassanien AE (2014) Automatic fruit classification using random forest algorithm, pp 164\u2013168. https:\/\/doi.org\/10.1109\/his.2014.7086191","DOI":"10.1109\/his.2014.7086191"},{"key":"3440_CR40","doi-asserted-by":"publisher","first-page":"422","DOI":"10.1016\/j.compag.2019.03.012","volume":"162","author":"S Zhang","year":"2019","unstructured":"Zhang S, Zhang S, Zhang C, Wang X, Shi Y (2019) Cucumber leaf disease identification with global pooling dilated convolutional neural network. Comput Electron Agric 162:422\u2013430. https:\/\/doi.org\/10.1016\/j.compag.2019.03.012","journal-title":"Comput Electron Agric"}],"container-title":["Journal of Ambient Intelligence and Humanized Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-021-03440-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12652-021-03440-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-021-03440-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,28]],"date-time":"2023-03-28T12:41:40Z","timestamp":1680007300000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12652-021-03440-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8,22]]},"references-count":40,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,4]]}},"alternative-id":["3440"],"URL":"https:\/\/doi.org\/10.1007\/s12652-021-03440-1","relation":{},"ISSN":["1868-5137","1868-5145"],"issn-type":[{"value":"1868-5137","type":"print"},{"value":"1868-5145","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,8,22]]},"assertion":[{"value":"14 September 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 August 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 August 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}