{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T17:13:47Z","timestamp":1740158027899,"version":"3.37.3"},"reference-count":29,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2021,1,4]],"date-time":"2021-01-04T00:00:00Z","timestamp":1609718400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,4]],"date-time":"2021-01-04T00:00:00Z","timestamp":1609718400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100004837","name":"Ministerio de Ciencia e Innovaci\u00f3n","doi-asserted-by":"publisher","award":["PID2019-107455RB-C22"],"id":[{"id":"10.13039\/501100004837","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Spanish Ministry of Science and Education","award":["TIN2017-85727-C4-3-P"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Ambient Intell Human Comput"],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1007\/s12652-020-02841-y","type":"journal-article","created":{"date-parts":[[2021,1,4]],"date-time":"2021-01-04T11:04:23Z","timestamp":1609758263000},"page":"10515-10527","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Supervised data transformation and dimensionality reduction with a 3-layer multi-layer perceptron for classification problems"],"prefix":"10.1007","volume":"12","author":[{"given":"Jos\u00e9 M.","family":"Valls","sequence":"first","affiliation":[]},{"given":"Ricardo","family":"Aler","sequence":"additional","affiliation":[]},{"given":"In\u00e9s M.","family":"Galv\u00e1n","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5051-3475","authenticated-orcid":false,"given":"David","family":"Camacho","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,1,4]]},"reference":[{"key":"2841_CR1","doi-asserted-by":"crossref","unstructured":"Aissa FB et al (2017) Unsupervised features extraction using a multi-view self organizing map for image classification. In: 2017 IEEE\/ACS 14th international conference on computer systems and applications (AICCSA). IEEE","DOI":"10.1109\/AICCSA.2017.104"},{"key":"2841_CR2","unstructured":"Aler R, Valls JM, Galv\u00e1n IM, Camacho D (2020) nntrf: supervised data transformation by means of neural network hidden layers. R package version, no 1, pp 3. https:\/\/CRAN.R-project.org\/package=nntrf"},{"key":"2841_CR3","volume-title":"Learning in the model space of neural networks","author":"W Aswolinskiy","year":"2018","unstructured":"Aswolinskiy W (2018) Learning in the model space of neural networks. Universitat Bielefeld, Bielefeld"},{"issue":"1","key":"2841_CR4","first-page":"5938","volume":"17","author":"B Bischl","year":"2016","unstructured":"Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G, Jones ZM (2016) mlr: machine learning in r. J Mach Learn Res 17(1):5938\u20135942","journal-title":"J Mach Learn Res"},{"key":"2841_CR5","doi-asserted-by":"crossref","unstructured":"Bluche T, Ney H, Kermorvant C (2013) Feature extraction with convolutional neural networks for handwritten word recognition. In: 2013 12th international conference on document analysis and recognition. IEEE, pp 285\u2013289","DOI":"10.1109\/ICDAR.2013.64"},{"issue":"10","key":"2841_CR6","doi-asserted-by":"publisher","first-page":"6232","DOI":"10.1109\/TGRS.2016.2584107","volume":"54","author":"Y Chen","year":"2016","unstructured":"Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232\u20136251","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"2841_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TBDATA.2017.2717439","volume-title":"IEEE Transactions on Big Data","author":"M Chen","year":"2017","unstructured":"Chen M, Shi X, Zhang Y, Wu D, Guizani M (2017) Deep features learning for medical image analysis with convolutional autoencoder neural network. In: IEEE Transactions on Big Data, pp 1\u201310. https:\/\/doi.org\/10.1109\/TBDATA.2017.2717439"},{"key":"2841_CR8","doi-asserted-by":"publisher","first-page":"3276","DOI":"10.1016\/j.eswa.2011.09.015","volume":"39.3","author":"A Echeverr\u00eda","year":"2012","unstructured":"Echeverr\u00eda A, Valls JM, Aler R (2012) Evolving linear transformations with a rotation-angles\/scaling representation. Expert Syst Appl 39.3:3276\u20133282","journal-title":"Expert Syst Appl"},{"key":"2841_CR9","doi-asserted-by":"crossref","unstructured":"Febrianto RT, Saputra DM, Jambak MI (2020) Dimension reduction with extraction methods (principal component analysis-self organizing map-isometric mapping) in indonesian language text documents clustering. In: Hybrid intelligent systems: 19th international conference on hybrid intelligent systems (HIS 2019) held in Bhopal, India, December 10\u201312, 2019, vol 1179. Springer Nature, p. 1","DOI":"10.1007\/978-3-030-49336-3_1"},{"issue":"5786","key":"2841_CR10","doi-asserted-by":"publisher","first-page":"504","DOI":"10.1126\/science.1127647","volume":"313","author":"GE Hinton","year":"2006","unstructured":"Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504\u2013507","journal-title":"Science"},{"key":"2841_CR11","doi-asserted-by":"crossref","unstructured":"Huertas-Tato J, Mart\u00edn A, Camacho D (2020) Cloud type identification using data fusion and ensemble learning. In: International conference on intelligent data engineering and automated learning. Springer, Cham","DOI":"10.1007\/978-3-030-62365-4_13"},{"key":"2841_CR12","doi-asserted-by":"crossref","unstructured":"Khan MA et al (2019) Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. In: 2019 international conference on computer and information sciences (ICCIS). IEEE","DOI":"10.1109\/ICCISci.2019.8716400"},{"key":"2841_CR13","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4614-6849-3","volume-title":"Applied predictive modeling","author":"M Kuhn","year":"2013","unstructured":"Kuhn M, Kjell J (2013) Applied predictive modeling, vol 26. Springer, New York"},{"issue":"12","key":"2841_CR14","doi-asserted-by":"publisher","first-page":"5530","DOI":"10.1109\/TII.2018.2873492","volume":"14","author":"N Lv","year":"2018","unstructured":"Lv N, Chen C, Qiu T, Sangaiah AK (2018) Deep learning and superpixel feature extraction based on contractive autoencoder for change detection in SAR images. IEEE Trans Ind Inform 14(12):5530\u20135538","journal-title":"IEEE Trans Ind Inform"},{"key":"2841_CR15","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1016\/j.jpdc.2017.09.006","volume":"117","author":"A Mart\u00edn","year":"2018","unstructured":"Mart\u00edn A, Lara-Cabrera R, Fuentes-Hurtado F, Naranjo V, Camacho D (2018) Evodeep: a new evolutionary approach for automatic deep neural networks parametrisation. J Parallel Distrib Comput 117:180\u2013191","journal-title":"J Parallel Distrib Comput"},{"key":"2841_CR16","doi-asserted-by":"publisher","first-page":"106144","DOI":"10.1016\/j.asoc.2020.106144","volume":"90","author":"A Mart\u00edn","year":"2020","unstructured":"Mart\u00edn A, Vargas VM, Guti\u00e9rrez PA, Camacho D, Herv\u00e1s-Mart\u00ednez C (2020) Optimising convolutional neural networks using a hybrid statistically-driven coral reef optimisation algorithm. Appl Soft Comput 90:106144","journal-title":"Appl Soft Comput"},{"key":"2841_CR17","unstructured":"Mejri M, Mejri A (2020) RandomForestMLP: an ensemble-based multi-layer perceptron against curse of dimensionality. arXiv preprint arXiv:2011.01188"},{"key":"2841_CR18","doi-asserted-by":"crossref","unstructured":"Min R, Stanley DA, Yuan Z, Bonner A, Zhang Z (2009) A deep non-linear feature mapping for large-margin knn classification. In: 2009 ninth IEEE international conference on data mining. IEEE, pp 357\u2013366","DOI":"10.1109\/ICDM.2009.27"},{"key":"2841_CR19","unstructured":"Min M, van der Maaten L, Yuan Z, Bonner AJ, Zhang Z (2010) Deep supervised t-distributed embedding. In: ICML"},{"key":"2841_CR20","unstructured":"Parviainen E (2011) Studies on dimension reduction and feature spaces. Doctoral Dissertation. Aalto University publication series. 94. Helsinki: Spoo. ISBN: 978-952-60-4311-1"},{"key":"2841_CR21","doi-asserted-by":"crossref","unstructured":"Parviainen E, Vehtari A (2009) Features and metric from a classifier improve visualizations with dimension reduction. In: International conference on artificial neural networks. Springer, pp 225\u2013234","DOI":"10.1007\/978-3-642-04277-5_23"},{"key":"2841_CR22","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825\u20132830","journal-title":"J Mach Learn Res"},{"issue":"6088","key":"2841_CR23","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1038\/323533a0","volume":"323","author":"DE Rumelhart","year":"1986","unstructured":"Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533\u2013536","journal-title":"Nature"},{"key":"2841_CR24","doi-asserted-by":"publisher","first-page":"19451","DOI":"10.1007\/s11042-020-08822-9","volume":"79","author":"M Sakkari","year":"2020","unstructured":"Sakkari M, Zaied M (2020) A convolutional deep self-organizing map feature extraction for machine learning. Multimed Tools Appl 79:19451\u201319470","journal-title":"Multimed Tools Appl"},{"key":"2841_CR25","unstructured":"Salakhutdinov R, Hinton G (2007) Learning a nonlinear embedding by preserving class neighbourhood structure. In: Proceedings of the eleventh international conference on artificial intelligence and statistics, vol 2, pp. 412\u2013419. PMLR"},{"key":"2841_CR26","doi-asserted-by":"crossref","unstructured":"Valls Jos\u00e9 M, Aler Ricardo (2009) Optimizing linear and quadratic data transformations for classification tasks. In: 2009 ninth international conference on intelligent systems design and applications. IEEE","DOI":"10.1109\/ISDA.2009.222"},{"key":"2841_CR27","unstructured":"Van Der Maaten L (2009) Learning a parametric embedding by preserving local structure. In: Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, vol 5, pp 384\u2013391. PMLR"},{"key":"2841_CR28","doi-asserted-by":"crossref","unstructured":"Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. http:\/\/www.stats.ox.ac.uk\/pub\/MASS4. ISBN 0-387-95457-0","DOI":"10.1007\/978-0-387-21706-2_14"},{"key":"2841_CR29","doi-asserted-by":"publisher","first-page":"24204","DOI":"10.1109\/ACCESS.2019.2897131","volume":"7","author":"A Yang","year":"2019","unstructured":"Yang A, Yang X, Wu W, Liu H, Zhuansun Y (2019) Research on feature extraction of tumor image based on convolutional neural network. IEEE Access 7:24204\u201324213","journal-title":"IEEE Access"}],"container-title":["Journal of Ambient Intelligence and Humanized Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-020-02841-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12652-020-02841-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-020-02841-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,10,26]],"date-time":"2021-10-26T08:54:05Z","timestamp":1635238445000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12652-020-02841-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,4]]},"references-count":29,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2021,12]]}},"alternative-id":["2841"],"URL":"https:\/\/doi.org\/10.1007\/s12652-020-02841-y","relation":{},"ISSN":["1868-5137","1868-5145"],"issn-type":[{"type":"print","value":"1868-5137"},{"type":"electronic","value":"1868-5145"}],"subject":[],"published":{"date-parts":[[2021,1,4]]},"assertion":[{"value":"17 July 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 December 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 January 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}