{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:48:22Z","timestamp":1726408102393},"reference-count":54,"publisher":"Springer Science and Business Media LLC","issue":"11","license":[{"start":{"date-parts":[[2018,11,9]],"date-time":"2018-11-09T00:00:00Z","timestamp":1541721600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"name":"National Key R&D Program of China","award":["2017YFB1001803"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61772428"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Ambient Intell Human Comput"],"published-print":{"date-parts":[[2019,11]]},"DOI":"10.1007\/s12652-018-1123-6","type":"journal-article","created":{"date-parts":[[2018,11,9]],"date-time":"2018-11-09T12:20:56Z","timestamp":1541766056000},"page":"4417-4430","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":50,"title":["A continuous smartphone authentication method based on gait patterns and keystroke dynamics"],"prefix":"10.1007","volume":"10","author":[{"given":"Imane","family":"Lamiche","sequence":"first","affiliation":[]},{"given":"Guo","family":"Bin","sequence":"additional","affiliation":[]},{"given":"Yao","family":"Jing","sequence":"additional","affiliation":[]},{"given":"Zhiwen","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Abdenour","family":"Hadid","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,11,9]]},"reference":[{"key":"1123_CR1","doi-asserted-by":"publisher","unstructured":"Akhtar Z, Buriro A, Crispo B, Falk TH (2017) Multimodal smartphone user authentication using touchstroke, phone-movement and face patterns. In: Signal and information processing (GlobalSIP), 2017 IEEE Global Conference. IEEE, pp\u00a01368\u20131372. \n https:\/\/doi.org\/10.1109\/GlobalSIP.2017.8309185","DOI":"10.1109\/GlobalSIP.2017.8309185"},{"key":"1123_CR2","doi-asserted-by":"publisher","unstructured":"Almohammad MS, Salama GI, Mahmoud TA (2012) Human identification system based on feature level fusion using face and gait biometrics. In: Engineering and technology (ICET), 2012 international conference. IEEE, pp 1\u20135. \n https:\/\/doi.org\/10.1109\/ICEngTechnol.201.6396120","DOI":"10.1109\/ICEngTechnol.201.6396120"},{"key":"1123_CR3","doi-asserted-by":"publisher","first-page":"164","DOI":"10.1049\/iet-bmt.2015.0101","volume":"5","author":"A Alsultan","year":"2016","unstructured":"Alsultan A, Warwick K, Wei H (2016) Free-text keystroke dynamics authentication for Arabic language. IET Biometr 5:164\u2013169. \n https:\/\/doi.org\/10.1049\/iet-bmt.2015.0101","journal-title":"IET Biometr"},{"key":"1123_CR4","doi-asserted-by":"publisher","first-page":"1998","DOI":"10.1109\/COMST.2016.2537748","volume":"18","author":"A Alzubaidi","year":"2016","unstructured":"Alzubaidi A, Kalita J (2016) Authentication of smartphone users using behavioral biometrics. IEEE Commun Surv Tutor 18:1998\u20132026. \n https:\/\/doi.org\/10.1109\/COMST.2016.2537748","journal-title":"IEEE Commun Surv Tutor"},{"key":"1123_CR5","doi-asserted-by":"publisher","unstructured":"Antal M, Szab\u00f3 LZ (2015) An evaluation of one-class and two-class classification algorithms for keystroke dynamics authentication on mobile devices. In: Control systems and computer science (CSCS), 2015 20th international conference. IEEE, pp\u00a0343\u2013350. \n https:\/\/doi.org\/10.1109\/CSCS.2015.16","DOI":"10.1109\/CSCS.2015.16"},{"key":"1123_CR6","doi-asserted-by":"publisher","first-page":"820","DOI":"10.1016\/j.protcy.2015.02.118","volume":"19","author":"M Antal","year":"2015","unstructured":"Antal M, Szab\u00f3 LZ, L\u00e1szl\u00f3 I (2015) Keystroke dynamics on android platform. Procedia Technol 19:820\u2013826. \n https:\/\/doi.org\/10.1016\/j.protcy.2015.02.118","journal-title":"Procedia Technol"},{"key":"1123_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1610252.1610287","volume":"10","author":"AJ Aviv","year":"2010","unstructured":"Aviv AJ, Gibson KL, Mossop E, Blaze M, Smith JM (2010) Smudge attacks on smartphone. Touch Screens Woot 10:1\u20137. \n https:\/\/doi.org\/10.1145\/1610252.1610287","journal-title":"Touch Screens Woot"},{"key":"1123_CR8","doi-asserted-by":"publisher","first-page":"4239","DOI":"10.3390\/s140304239","volume":"14","author":"SD Bersch","year":"2014","unstructured":"Bersch SD, Azzi D, Khusainov R, Achumba IE, Ries J (2014) Sensor data acquisition and processing parameters for human activity classification. Sensors 14:4239\u20134270. \n https:\/\/doi.org\/10.3390\/s140304239","journal-title":". Sensors"},{"key":"1123_CR9","doi-asserted-by":"publisher","unstructured":"Bours P, Mondal S (2015) Continuous authentication with keystroke dynamics. Norwegian Information Security Laboratory NISlab 41\u201358. \n https:\/\/doi.org\/10.13140\/2.1.2642.5125","DOI":"10.13140\/2.1.2642.5125"},{"key":"1123_CR10","doi-asserted-by":"publisher","first-page":"999","DOI":"10.1006\/imms.1993.1092","volume":"39","author":"M Brown","year":"1993","unstructured":"Brown M, Rogers SJ (1993) User identification via keystroke characteristics of typed names using neural networks Int J Man Mach Stud 39:999\u20131014. \n https:\/\/doi.org\/10.1006\/imms.1993.1092","journal-title":"Int J Man Mach Stud"},{"key":"1123_CR11","doi-asserted-by":"publisher","unstructured":"Buschek D, De Luca A, Alt F (2015) Improving accuracy, applicability and usability of keystroke biometrics on mobile touchscreen devices. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems. ACM, pp\u00a01393\u20131402. \n https:\/\/doi.org\/10.1145\/2702123.2702252","DOI":"10.1145\/2702123.2702252"},{"key":"1123_CR12","doi-asserted-by":"publisher","unstructured":"Choi S, Youn I-H, LeMay R, Burns S, Youn J-H (2014) Biometric gait recognition based on wireless acceleration sensor using k-nearest neighbor classification. In: Computing, networking and communications (ICNC), 2014 international conference. IEEE, pp\u00a01091\u20131095. \n https:\/\/doi.org\/10.1109\/ICCNC.2014.6785491","DOI":"10.1109\/ICCNC.2014.6785491"},{"key":"1123_CR13","doi-asserted-by":"publisher","first-page":"7","DOI":"10.1186\/2196-064X-1-7","volume":"1","author":"H Crawford","year":"2014","unstructured":"Crawford H, Renaud K (2014) Understanding user perceptions of transparent authentication on a mobile device. J Trust Manag 1:7. \n https:\/\/doi.org\/10.1186\/2196-064X-1-7","journal-title":"J Trust Manag"},{"key":"1123_CR14","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1016\/j.cose.2013.05.005","volume":"39","author":"H Crawford","year":"2013","unstructured":"Crawford H, Renaud K, Storer T (2013) A framework for continuous, transparent mobile device authentication. Comput Secur 39:127\u2013136. \n https:\/\/doi.org\/10.1016\/j.cose.2013.05.005","journal-title":"Comput Secur"},{"key":"1123_CR15","doi-asserted-by":"publisher","first-page":"100","DOI":"10.3390\/sym8100100","volume":"8","author":"R Dama\u0161evi\u010dius","year":"2016","unstructured":"Dama\u0161evi\u010dius R, Maskeli\u016bnas R, Ven\u010dkauskas A, Wo\u017aniak M (2016) Smartphone user identity verification using gait characteristics. Symmetry 8:100. \n https:\/\/doi.org\/10.3390\/sym8100100","journal-title":"Symmetry"},{"key":"1123_CR16","unstructured":"Damer N, Maul F, Busch C (2016) Multi-biometric continuous authentication: a trust model for an asynchronous system. In: Information fusion (FUSION), 19th international conference. IEEE, pp\u00a02192\u20132199"},{"key":"1123_CR17","doi-asserted-by":"publisher","unstructured":"Derawi MO, Nickel C, Bours P, Busch C (2010) Unobtrusive user-authentication on mobile phones using biometric gait recognition. In: Intelligent information hiding and multimedia signal processing (IIH-MSP), sixth international conference, IEEE, pp\u00a0306\u2013311. \n https:\/\/doi.org\/10.1109\/IIHMSP.2010.83","DOI":"10.1109\/IIHMSP.2010.83"},{"key":"1123_CR18","doi-asserted-by":"publisher","first-page":"968","DOI":"10.9717\/kmms.2014.17.8.968","volume":"17","author":"S Do","year":"2014","unstructured":"Do S, Hoang T, Luong C, Choi S, Lee D, Bang K, Choi D (2014) Using keystroke dynamics for implicit authentication on smartphone. J Korea Multim Soc 17:968\u2013976. \n https:\/\/doi.org\/10.9717\/kmms.2014.17.8.968","journal-title":"J Korea Multim Soc"},{"key":"1123_CR19","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1109\/TIFS.2012.2225048","volume":"8","author":"M Frank","year":"2013","unstructured":"Frank M, Biedert R, Ma E, Martinovic I, Song D (2013) Touchalytics: on the applicability of touchscreen input as a behavioral biometric for continuous authentication. IEEE Trans Inf Forens Secur 8:136\u2013148. \n https:\/\/doi.org\/10.1109\/TIFS.2012.2225048","journal-title":"IEEE Trans Inf Forens Secur"},{"key":"1123_CR20","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1016\/j.patrec.2015.09.009","volume":"82","author":"C Galdi","year":"2016","unstructured":"Galdi C, Nappi M, Dugelay J-L (2016) Multimodal authentication on smartphones: combining iris and sensor recognition for a double check of user identity. Pattern Recogn Lett 82:144\u2013153. \n https:\/\/doi.org\/10.1016\/j.patrec.2015.09.009","journal-title":"Pattern Recogn Lett"},{"key":"1123_CR21","doi-asserted-by":"publisher","unstructured":"Guan Y, Wei X, Li C-T, Marcialis GL, Roli F, Tistarelli M (2013) Combining gait and face for tackling the elapsed time challenges. In: Biometrics: theory, applications and systems (BTAS), sixth international conference. IEEE, pp\u00a01\u20138. \n https:\/\/doi.org\/10.1109\/BTAS.2013.6712749","DOI":"10.1109\/BTAS.2013.6712749"},{"key":"1123_CR22","doi-asserted-by":"publisher","first-page":"312","DOI":"10.1145\/1085126.1085129","volume":"8","author":"D Gunetti","year":"2005","unstructured":"Gunetti D, Picardi C (2005) Keystroke analysis of free text. ACM Trans Inf Syst Secur (TISSEC) 8:312\u2013347. \n https:\/\/doi.org\/10.1145\/1085126.1085129","journal-title":"ACM Trans Inf Syst Secur (TISSEC)"},{"key":"1123_CR23","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1007\/978-3-642-39218-4_7","volume-title":"Security and Privacy Protection in Information Processing Systems","author":"Thang Hoang","year":"2013","unstructured":"Hoang T, Choi D, Vo V, Nguyen A, Nguyen TA (2013) lightweight gait authentication on mobile phone regardless of installation error. In: IFIP international information security conference, Springer, pp\u00a083\u2013101. \n https:\/\/doi.org\/10.1007\/978-3-642-39218-4_7"},{"key":"1123_CR24","doi-asserted-by":"publisher","unstructured":"Hofmann M, Schmidt SM, Rajagopalan AN, Rigoll G (2012) Combined face and gait recognition using alpha matte preprocessing. In: Biometrics (ICB), 2012 5th IAPR international conference, IEEE, pp\u00a0390\u2013395. \n https:\/\/doi.org\/10.1109\/ICB.2012.6199782","DOI":"10.1109\/ICB.2012.6199782"},{"key":"1123_CR25","doi-asserted-by":"publisher","unstructured":"Holmes G, Donkin A, Witten IH (1994) Weka: a machine learning workbench. In: Intelligent information systems, 1994. In: Proceedings of the 1994 Second Australian and New Zealand Conference. IEEE, pp\u00a0357\u2013361. \n https:\/\/doi.org\/10.1109\/ANZIIS.1994.396988","DOI":"10.1109\/ANZIIS.1994.396988"},{"key":"1123_CR26","doi-asserted-by":"publisher","unstructured":"Hossain E, Chetty G (2011) Multimodal face-gait fusion for biometric person authentication. In: Embedded and ubiquitous computing (EUC), 2011 IFIP 9th international conference. IEEE, pp\u00a0332\u2013337. \n https:\/\/doi.org\/10.1109\/EUC.2011.52","DOI":"10.1109\/EUC.2011.52"},{"key":"1123_CR27","doi-asserted-by":"publisher","first-page":"542","DOI":"10.1002\/sec.1061","volume":"9","author":"G Kambourakis","year":"2016","unstructured":"Kambourakis G, Damopoulos D, Papamartzivanos D, Pavlidakis E (2016) Introducing touchstroke: keystroke based authentication system for smartphones. Secur Commun Netw 9:542\u2013554. \n https:\/\/doi.org\/10.1002\/sec.1061","journal-title":"Secur Commun Netw"},{"key":"1123_CR28","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.ins.2014.08.070","volume":"308","author":"P Kang","year":"2015","unstructured":"Kang P, Cho S (2015) Keystroke dynamics-based user authentication using long and free text strings from various input devices. Inf Sci 308:72\u201393. \n https:\/\/doi.org\/10.1016\/j.ins.2014.08.070","journal-title":"Inf Sci"},{"key":"1123_CR29","unstructured":"Lau E, Liu X, Xiao C, Yu X (2004) Enhanced user authentication through keystroke biometrics. Massachusetts Institute of Technology 9"},{"key":"1123_CR30","doi-asserted-by":"publisher","unstructured":"Mantyjarvi J, Lindholm M, Vildjiounaite E, Makela S-M, Ailisto H (2005) Identifying users of portable devices from gait pattern with accelerometers. In: Acoustics, speech, and signal processing, 2005. Proceedings.(ICASSP\u201905). IEEE international conference. IEEE, pp\u00a0ii\/973\u2013ii\/976. Vol.\u00a0972. \n https:\/\/doi.org\/10.1109\/ICASSP.2005.1415569","DOI":"10.1109\/ICASSP.2005.1415569"},{"key":"1123_CR31","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1016\/S0167-739X(99)00059-X","volume":"16","author":"F Monrose","year":"2000","unstructured":"Monrose F, Rubin AD (2000) Keystroke dynamics as a biometric for authentication. Futur Gen Comput Syst 16:351\u2013359. \n https:\/\/doi.org\/10.1016\/S0167-739X(99)00059-X","journal-title":"Futur Gen Comput Syst"},{"key":"1123_CR32","doi-asserted-by":"publisher","unstructured":"Muaaz M, Mayrhofer R (2013) An analysis of different approaches to gait recognition using cell phone based accelerometers. In: Proceedings of international conference on advances in mobile computing & multimedia, ACM, p 293. \n https:\/\/doi.org\/10.1145\/2536853.2536895","DOI":"10.1145\/2536853.2536895"},{"key":"1123_CR33","doi-asserted-by":"publisher","unstructured":"Muaaz M, Mayrhofer R (2014) Orientation independent cell phone based gait authentication. In: Proceedings of the 12th international conference on advances in mobile computing and multimedia. ACM, pp\u00a0161\u2013164. \n https:\/\/doi.org\/10.1145\/2684103.2684152","DOI":"10.1145\/2684103.2684152"},{"issue":"1","key":"1123_CR34","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1007\/s12652-017-0580-7","volume":"10","author":"Aparajita Nanda","year":"2017","unstructured":"Nanda A, Sa PK, Chauhan DS, Majhi B (2017) A person re-identification framework by inlier-set group modeling for video surveillance. J Ambient Intell Human Comput:1\u201313. \n https:\/\/doi.org\/10.1007\/s12652-017-0580-7","journal-title":"Journal of Ambient Intelligence and Humanized Computing"},{"key":"1123_CR35","doi-asserted-by":"publisher","unstructured":"Niazi AH, Yazdansepas D, Gay JL, Maier FW, Ramaswamy L, Rasheed K, Buman MP (2017) Statistical analysis of window sizes and sampling rates in human activity recognition. In: HEALTHINF, pp\u00a0319\u2013325. \n https:\/\/doi.org\/10.5220\/0006148503190325","DOI":"10.5220\/0006148503190325"},{"key":"1123_CR36","unstructured":"Ravi N, Dandekar N, Mysore P, Littman ML (2005) Activity recognition from accelerometer data. In: AAAI, vol\u00a02005. pp\u00a01541\u20131546"},{"key":"1123_CR37","unstructured":"Ross A, Jain AK (2004) Multimodal biometrics: an overview. In: Signal processing conference, 2004 12th European. IEEE, pp\u00a01221\u20131224"},{"key":"1123_CR38","doi-asserted-by":"publisher","first-page":"465","DOI":"10.1007\/978-3-642-30436-1_38","volume-title":"IFIP Advances in Information and Communication Technology","author":"Hataichanok Saevanee","year":"2012","unstructured":"Saevanee H, Clarke NL, Furnell SM (2012) Multi-modal behavioural biometric authentication for mobile devices. In: IFIP international information security conference. Springer, pp\u00a0465\u2013474. \n https:\/\/doi.org\/10.1007\/978-3-642-30436-1_38"},{"key":"1123_CR39","doi-asserted-by":"publisher","unstructured":"Salem A, Zaidan D, Swidan A, Saifan R (2016) Analysis of strong password using keystroke dynamics authentication in touch screen devices. In: Cybersecurity and cyberforensics conference (CCC). IEEE, pp\u00a015\u201321. \n https:\/\/doi.org\/10.1109\/CCC.2016.11","DOI":"10.1109\/CCC.2016.11"},{"key":"1123_CR40","unstructured":"Singha TB, Nath RK, Narsimhadhan A (2017) Person Recognition using smartphones\u2019 accelerometer data. arXiv:171104689"},{"key":"1123_CR41","doi-asserted-by":"publisher","first-page":"877","DOI":"10.1109\/TIFS.2015.2506542","volume":"11","author":"Z Sitov\u00e1","year":"2016","unstructured":"Sitov\u00e1 Z, \u0160ed\u011bnka J, Yang Q, Peng G, Zhou G, Gasti P, Balagani KS (2016) HMOG: New behavioral biometric features for continuous authentication of smartphone users. IEEE Trans Inf Forens Secur 11:877\u2013892. \n https:\/\/doi.org\/10.1109\/TIFS.2015.2506542","journal-title":"IEEE Trans Inf Forens Secur"},{"key":"1123_CR42","doi-asserted-by":"publisher","first-page":"1157","DOI":"10.1016\/S0167-8655(99)00083-5","volume":"20","author":"P Somol","year":"1999","unstructured":"Somol P, Pudil P, Novovi\u010dov\u00e1 J, Pacl\u0131k P (1999) Adaptive floating search methods in feature selection. Pattern Recognit Lett 20:1157\u20131163. \n https:\/\/doi.org\/10.1016\/S0167-8655(99)00083-5","journal-title":"Pattern Recognit Lett"},{"key":"1123_CR43","doi-asserted-by":"publisher","unstructured":"Stanciu V-D, Spolaor R, Conti M, Giuffrida C (2016) On the effectiveness of sensor-enhanced keystroke dynamics against statistical attacks. In: Proceedings of the sixth ACM conference on data and application security and privacy. ACM, pp\u00a0105\u2013112. \n https:\/\/doi.org\/10.1145\/2857705.2857748","DOI":"10.1145\/2857705.2857748"},{"key":"1123_CR44","first-page":"37","volume-title":"Data classification: algorithms and applications","author":"J Tang","year":"2014","unstructured":"Tang J, Alelyani S, Liu H (2014) Feature selection for classification: a review. In: Aggarwal C (ed) Data classification: algorithms and applications. CRC Press, Boca Raton, pp 37\u201364"},{"issue":"5","key":"1123_CR45","doi-asserted-by":"publisher","first-page":"1705","DOI":"10.1007\/s12652-018-0880-6","volume":"9","author":"Shuai Tao","year":"2018","unstructured":"Tao S, Zhang X, Cai H, Lv Z, Hu C, Xie H (2018) Gait based biometric personal authentication by using MEMS inertial sensors. J Ambient Intell Humaniz Comput:1\u20138. \n https:\/\/doi.org\/10.1007\/s12652-018-0880-6","journal-title":"Journal of Ambient Intelligence and Humanized Computing"},{"key":"1123_CR46","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1007\/978-3-319-62404-4_18","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2017","author":"Mindaugas Ulinskas","year":"2017","unstructured":"Ulinskas M, Wo\u017aniak M, Dama\u0161evi\u010dius R (2017) Analysis of keystroke dynamics for fatigue recognition. In: International conference on computational science and its applications. Springer, pp\u00a0235\u2013247. \n https:\/\/doi.org\/10.1007\/978-3-319-62404-4_18"},{"key":"1123_CR47","doi-asserted-by":"publisher","first-page":"947","DOI":"10.1016\/j.procs.2018.04.094","volume":"130","author":"M Ulinskas","year":"2018","unstructured":"Ulinskas M, Dama\u0161evi\u010dius R, Maskeli\u016bnas R, Wo\u017aniak M (2018) Recognition of human daytime fatigue using keystroke data. Procedia Comput Sci 130:947\u2013952. \n https:\/\/doi.org\/10.1016\/j.procs.2018.04.094","journal-title":"Procedia Comput Sci"},{"key":"1123_CR48","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1007\/11748625_12","volume-title":"Lecture Notes in Computer Science","author":"Elena Vildjiounaite","year":"2006","unstructured":"Vildjiounaite E, M\u00e4kel\u00e4 S-M, Lindholm M, Riihim\u00e4ki R, Kyll\u00f6nen V, M\u00e4ntyj\u00e4rvi J, Ailisto H (2006) Unobtrusive multimodal biometrics for ensuring privacy and information security with personal devices. In: International conference on pervasive computing. Springer, pp\u00a0187\u2013201. \n https:\/\/doi.org\/10.1007\/11748625_12"},{"key":"1123_CR49","doi-asserted-by":"publisher","first-page":"2349","DOI":"10.1109\/LSP.2015.2481930","volume":"22","author":"X Xing","year":"2015","unstructured":"Xing X, Wang K, Lv Z (2015) Fusion of gait and facial features using coupled projections for people identification at a distance. IEEE Signal Process Lett 22:2349\u20132353. \n https:\/\/doi.org\/10.1109\/LSP.2015.2481930","journal-title":"IEEE Signal Process Lett"},{"key":"1123_CR50","doi-asserted-by":"publisher","unstructured":"Zakaria NH, Griffiths D, Brostoff S, Yan J (2011) Shoulder surfing defence for recall-based graphical passwords. In: Proceedings of the seventh symposium on usable privacy and security. ACM, p\u00a06. \n https:\/\/doi.org\/10.1145\/2078827.2078835","DOI":"10.1145\/2078827.2078835"},{"key":"1123_CR51","doi-asserted-by":"publisher","first-page":"1864","DOI":"10.1109\/TCYB.2014.2361287","volume":"45","author":"Y Zhang","year":"2015","unstructured":"Zhang Y, Pan G, Jia K, Lu M, Wang Y, Wu Z (2015) Accelerometer-based gait recognition by sparse representation of signature points with clusters. IEEE Trans Cybernet 45:1864\u20131875. \n https:\/\/doi.org\/10.1109\/TCYB.2014.2361287","journal-title":"IEEE Trans Cybernet"},{"key":"1123_CR52","doi-asserted-by":"publisher","first-page":"478","DOI":"10.3390\/s17030478","volume":"17","author":"Y Zhao","year":"2017","unstructured":"Zhao Y, Zhou S (2017) Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network. Sensors 17:478. \n https:\/\/doi.org\/10.3390\/s17030478","journal-title":"Sensors"},{"key":"1123_CR53","doi-asserted-by":"crossref","unstructured":"Zhong Y, Deng Y (2015) A survey on keystroke dynamics biometrics: approaches, advances, and evaluations. Recent advances in user authentication using keystroke dynamics biometrics Science Gate Publishing:1\u201322. \n https:\/\/doi.org\/15579\/gcsr.vol2.ch1","DOI":"10.15579\/gcsr.vol2.ch1"},{"key":"1123_CR54","doi-asserted-by":"publisher","unstructured":"Zhong Y, Deng Y, Meltzner G (2015) Pace independent mobile gait biometrics. In: Biometrics theory, applications and systems (BTAS),7th international conference. IEEE, pp\u00a01\u20138. \n https:\/\/doi.org\/10.1109\/BTAS.2015.7358784","DOI":"10.1109\/BTAS.2015.7358784"}],"container-title":["Journal of Ambient Intelligence and Humanized Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-018-1123-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s12652-018-1123-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-018-1123-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,11,9]],"date-time":"2019-11-09T00:12:09Z","timestamp":1573258329000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s12652-018-1123-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11,9]]},"references-count":54,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2019,11]]}},"alternative-id":["1123"],"URL":"https:\/\/doi.org\/10.1007\/s12652-018-1123-6","relation":{},"ISSN":["1868-5137","1868-5145"],"issn-type":[{"value":"1868-5137","type":"print"},{"value":"1868-5145","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,11,9]]},"assertion":[{"value":"18 June 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 November 2018","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 November 2018","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}