{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,18]],"date-time":"2024-01-18T00:19:42Z","timestamp":1705537182357},"reference-count":43,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,9,7]],"date-time":"2023-09-07T00:00:00Z","timestamp":1694044800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,9,7]],"date-time":"2023-09-07T00:00:00Z","timestamp":1694044800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51774219"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Key R &D Projects in Hubei Province","award":["2020BAB098"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Cogn Comput"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1007\/s12559-023-10198-5","type":"journal-article","created":{"date-parts":[[2023,9,7]],"date-time":"2023-09-07T04:01:41Z","timestamp":1694059301000},"page":"215-228","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Prototype Consistency Learning for Medical Image Segmentation by Cross Pseudo Supervision"],"prefix":"10.1007","volume":"16","author":[{"given":"Lu","family":"Xie","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3268-127X","authenticated-orcid":false,"given":"Weigang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yongqiang","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yuntao","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,7]]},"reference":[{"key":"10198_CR1","doi-asserted-by":"crossref","unstructured":"Wang Z, Zhao Z, Xing X, Xu D, Kong X, Zhou L. Conflict-based cross-view consistency for semi-supervised semantic segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition; 2023. pp. 19585\u201319595.","DOI":"10.1109\/CVPR52729.2023.01876"},{"key":"10198_CR2","doi-asserted-by":"publisher","first-page":"107789","DOI":"10.1016\/j.asoc.2021.107789","volume":"112","author":"SK Dutta","year":"2021","unstructured":"Dutta SK, Saikia S, Barman A, Roy R, Bora K, Mahanta LB, Suresh R. Study on enhanced deep learning approaches for value-added identification and segmentation of striation marks in bullets for precise firearm classification. Appl Soft Comput. 2021;112:107789.","journal-title":"Appl. Soft Comput."},{"key":"10198_CR3","doi-asserted-by":"crossref","unstructured":"Mohajerani S, Saeedi P. Cloud-net: An end-to-end cloud detection algorithm for landsat 8 imagery. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium; 2019. pp. 1029\u20131032. IEEE.","DOI":"10.1109\/IGARSS.2019.8898776"},{"key":"10198_CR4","doi-asserted-by":"publisher","first-page":"107756","DOI":"10.1016\/j.patcog.2020.107756","volume":"113","author":"Q Yu","year":"2021","unstructured":"Yu Q, Gao Y, Zheng Y, Zhu J, Dai Y, Shi Y. Crossover-net: Leveraging vertical-horizontal crossover relation for robust medical image segmentation. Pattern Recogn. 2021;113:107756.","journal-title":"Pattern Recogn."},{"issue":"4","key":"10198_CR5","doi-asserted-by":"publisher","first-page":"1369","DOI":"10.1109\/TPAMI.2019.2960224","volume":"43","author":"S Mittal","year":"2019","unstructured":"Mittal S, Tatarchenko M, Brox T. Semi-supervised semantic segmentation with high-and low-level consistency. IEEE Trans Pattern Anal Mach Intell. 2019;43(4):1369\u201379.","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10198_CR6","unstructured":"Sun L, Wu J, Ding X, Huang Y, Wang G, Yu Y. A teacher-student framework for semi-supervised medical image segmentation from mixed supervision. IEEE Trans Med Imaging. 2020."},{"key":"10198_CR7","unstructured":"Kurakin A, Raffel C, Berthelot D, Cubuk ED, Zhang H, Sohn K, Carlini N. Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring. ICLR. 2020."},{"issue":"8","key":"10198_CR8","doi-asserted-by":"publisher","first-page":"1979","DOI":"10.1109\/TPAMI.2018.2858821","volume":"41","author":"T Miyato","year":"2018","unstructured":"Miyato T, Maeda S-I, Koyama M, Ishii S. Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans Pattern Anal Mach Intell. 2018;41(8):1979\u201393.","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10198_CR9","doi-asserted-by":"crossref","unstructured":"Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. Mixup: Beyond empirical risk minimization. ICLR. 2017.","DOI":"10.1007\/978-1-4899-7687-1_79"},{"key":"10198_CR10","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1016\/j.neunet.2021.10.008","volume":"145","author":"V Verma","year":"2022","unstructured":"Verma V, Kawaguchi K, Lamb A, Kannala J, Solin A, Bengio Y, Lopez-Paz D. Interpolation consistency training for semi-supervised learning. Neural Netw. 2022;145:90\u2013106.","journal-title":"Neural Netw."},{"issue":"2","key":"10198_CR11","doi-asserted-by":"publisher","first-page":"523","DOI":"10.1109\/TNNLS.2020.2995319","volume":"32","author":"X Li","year":"2020","unstructured":"Li X, Yu L, Chen H, Fu C-W, Xing L, Heng P-A. Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Trans Neural Netw Learn Syst. 2020;32(2):523\u201334.","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"10198_CR12","doi-asserted-by":"crossref","unstructured":"Fang K, Li WJ. Dmnet: difference minimization network for semi-supervised segmentation in medical images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention; 2020. pp. 532\u2013541. Springer.","DOI":"10.1007\/978-3-030-59710-8_52"},{"key":"10198_CR13","doi-asserted-by":"publisher","first-page":"106051","DOI":"10.1016\/j.compbiomed.2022.106051","volume":"149","author":"X Zheng","year":"2022","unstructured":"Zheng X, Fu C, Xie H, Chen J, Wang X, Sham C-W. Uncertainty-aware deep co-training for semi-supervised medical image segmentation. Comput Biol Med. 2022;149:106051.","journal-title":"Comput. Biol. Med."},{"issue":"3","key":"10198_CR14","doi-asserted-by":"publisher","first-page":"608","DOI":"10.1109\/TMI.2021.3117888","volume":"41","author":"Y Shi","year":"2021","unstructured":"Shi Y, Zhang J, Ling T, Lu J, Zheng Y, Yu Q, Qi L, Gao Y. Inconsistency-aware uncertainty estimation for semi-supervised medical image segmentation. IEEE Trans Med Imaging. 2021;41(3):608\u201320.","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10198_CR15","doi-asserted-by":"crossref","unstructured":"Kervadec H, Dolz J, Granger \u00c9, Ben\u00a0Ayed I. Curriculum semi-supervised segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention; 2019. pp. 568\u2013576. Springer.","DOI":"10.1007\/978-3-030-32245-8_63"},{"key":"10198_CR16","doi-asserted-by":"crossref","unstructured":"Liu X, Hu G, Ma X, Kuang H. An enhanced neural network based on deep metric learning for skin lesion segmentation. In: 2019 Chinese Control And Decision Conference (CCDC); 2019. pp. 1633\u20131638. IEEE.","DOI":"10.1109\/CCDC.2019.8832646"},{"key":"10198_CR17","doi-asserted-by":"crossref","unstructured":"Luther K, Seung HS. Learning metric graphs for neuron segmentation in electron microscopy images. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019); 2019. pp. 244\u2013248. IEEE.","DOI":"10.1109\/ISBI.2019.8759576"},{"key":"10198_CR18","doi-asserted-by":"crossref","unstructured":"Xu Z, Wang Y, Lu D, Yu L, Yan J, Luo J, Ma K, Zheng Y, Tong RKY. All-around real label supervision: Cyclic prototype consistency learning for semi-supervised medical image segmentation. IEEE J Biomed Health Inform. 2022.","DOI":"10.1109\/JBHI.2022.3162043"},{"key":"10198_CR19","doi-asserted-by":"crossref","unstructured":"Xiao M, Kortylewski A, Wu R, Qiao S, Shen W, Yuille A. Tdmpnet: Prototype network with recurrent top-down modulation for robust object classification under partial occlusion. In: European Conference on Computer Vision; 2020. pp. 447\u2013463. Springer.","DOI":"10.1007\/978-3-030-66096-3_31"},{"key":"10198_CR20","first-page":"21969","volume":"33","author":"W Xu","year":"2020","unstructured":"Xu W, Xian Y, Wang J, Schiele B, Akata Z. Attribute prototype network for zero-shot learning. Adv Neural Inf Process Syst. 2020;33:21969\u201380.","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"10198_CR21","doi-asserted-by":"crossref","unstructured":"Liu Y, Zhang X, Zhang S, He X. Part-aware prototype network for few-shot semantic segmentation. In: European Conference on Computer Vision; 2020. pp. 142\u2013158. Springer.","DOI":"10.1007\/978-3-030-58545-7_9"},{"key":"10198_CR22","unstructured":"Li Y, Gupta A. Beyond grids: Learning graph representations for visual recognition. Adv Neural Inf Process. 2018;31."},{"key":"10198_CR23","doi-asserted-by":"crossref","unstructured":"Lu Y, Chen Y, Zhao D, Chen J. Graph-fcn for image semantic segmentation. In: International Symposium on Neural Networks; 2019. pp. 97\u2013105. Springer.","DOI":"10.1007\/978-3-030-22796-8_11"},{"key":"10198_CR24","unstructured":"Zhang L, Li X, Arnab A, Yang K, Tong Y, Torr PH. Dual graph convolutional network for semantic segmentation. IEEE\/CVF Conference on Computer Vision and Pattern Recognition. 2019."},{"key":"10198_CR25","doi-asserted-by":"crossref","unstructured":"Wan J, Liu Y, Wei D, Bai X, Xu Y. Super-bpd: Super boundary-to-pixel direction for fast image segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition; 2020 pp. 9253\u20139262.","DOI":"10.1109\/CVPR42600.2020.00927"},{"key":"10198_CR26","doi-asserted-by":"crossref","unstructured":"Suzuki T. Superpixel segmentation via convolutional neural networks with regularized information maximization. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2020. pp. 2573\u20132577. IEEE.","DOI":"10.1109\/ICASSP40776.2020.9054140"},{"key":"10198_CR27","doi-asserted-by":"crossref","unstructured":"Wang K, Liew JH, Zou Y, Zhou D, Feng J. Panet: Few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision; 2019. pp. 9197\u20139206.","DOI":"10.1109\/ICCV.2019.00929"},{"key":"10198_CR28","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1016\/j.aiopen.2021.01.001","volume":"1","author":"J Zhou","year":"2020","unstructured":"Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M. Graph neural networks: A review of methods and applications. AI Open. 2020;1:57\u201381.","journal-title":"AI Open"},{"issue":"2","key":"10198_CR29","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1109\/TMI.2013.2284099","volume":"33","author":"S Jaeger","year":"2013","unstructured":"Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, Xue Z, Palaniappan K, Singh RK, Antani S, et al. Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging. 2013;33(2):233\u201345.","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"10198_CR30","doi-asserted-by":"publisher","first-page":"71","DOI":"10.2214\/ajr.174.1.1740071","volume":"174","author":"J Shiraishi","year":"2000","unstructured":"Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K-I, Matsui M, Fujita H, Kodera Y, Doi K. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists\u2019 detection of pulmonary nodules. Am J Roentgenol. 2000;174(1):71\u20134.","journal-title":"Am. J. Roentgenol."},{"issue":"1","key":"10198_CR31","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.media.2005.02.002","volume":"10","author":"B Van Ginneken","year":"2006","unstructured":"Van Ginneken B, Stegmann MB, Loog M. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal. 2006;10(1):19\u201340.","journal-title":"Med. Image Anal."},{"issue":"18","key":"10198_CR32","doi-asserted-by":"publisher","first-page":"6264","DOI":"10.3390\/app10186264","volume":"10","author":"V Bosdelekidis","year":"2020","unstructured":"Bosdelekidis V, Ioakeimidis NS. Lung field segmentation in chest x-rays: a deformation-tolerant procedure based on the approximation of rib cage seed points. Appl Sci. 2020;10(18):6264.","journal-title":"Appl. Sci."},{"issue":"2","key":"10198_CR33","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1109\/TMI.2013.2290491","volume":"33","author":"S Candemir","year":"2013","unstructured":"Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue Z, Karargyris A, Antani S, Thoma G, McDonald CJ. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging. 2013;33(2):577\u201390.","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10198_CR34","doi-asserted-by":"crossref","unstructured":"Oliveira H, dos Santos J. Deep transfer learning for segmentation of anatomical structures in chest radiographs. In: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI); 2018. pp. 204\u2013211. IEEE.","DOI":"10.1109\/SIBGRAPI.2018.00033"},{"key":"10198_CR35","doi-asserted-by":"publisher","first-page":"285","DOI":"10.1016\/j.cmpb.2019.06.005","volume":"177","author":"JC Souza","year":"2019","unstructured":"Souza JC, Diniz JOB, Ferreira JL, da Silva GLF, Silva AC, de Paiva AC. An automatic method for lung segmentation and reconstruction in chest x-ray using deep neural networks. Comput Methods Programs Biomed. 2019;177:285\u201396.","journal-title":"Comput. Methods Programs Biomed."},{"key":"10198_CR36","doi-asserted-by":"crossref","unstructured":"Wang H, Gu H, Qin P, Wang J. U-shaped gan for semi-supervised learning and unsupervised domain adaptation in high resolution chest radiograph segmentation. Front Med. 2021;8.","DOI":"10.3389\/fmed.2021.782664"},{"key":"10198_CR37","unstructured":"Scherer S, Sch\u00f6n R, Lienhart R. Pseudo-label noise suppression techniques for semi-supervised semantic segmentation. 2022. arXiv preprint arXiv:2210.10426."},{"key":"10198_CR38","doi-asserted-by":"crossref","unstructured":"Yang L, Zhuo W, Qi L, Shi Y, Gao Y. St++: Make self-training work better for semi-supervised semantic segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition; 2022. pp. 4268\u20134277.","DOI":"10.1109\/CVPR52688.2022.00423"},{"key":"10198_CR39","doi-asserted-by":"crossref","unstructured":"Xie H, Wang C, Zheng M, Dong M, You S, Fu C, Xu C. Boosting semi-supervised semantic segmentation with probabilistic representations. In: Proceedings of the AAAI Conference on Artificial Intelligence; 2023. vol. 37, pp. 2938\u20132946.","DOI":"10.1609\/aaai.v37i3.25396"},{"issue":"8","key":"10198_CR40","doi-asserted-by":"publisher","first-page":"1865","DOI":"10.1109\/TMI.2018.2806086","volume":"37","author":"AA Novikov","year":"2018","unstructured":"Novikov AA, Lenis D, Major D, Hlad\u016fvka J, Wimmer M, B\u00fchler K. Fully convolutional architectures for multiclass segmentation in chest radiographs. IEEE Trans Med Imaging. 2018;37(8):1865\u201376.","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10198_CR41","doi-asserted-by":"crossref","unstructured":"Dai W, Dong N, Wang Z, Liang X, Zhang H, Xing EP. Scan: Structure correcting adversarial network for organ segmentation in chest x-rays. In: International Workshop on Deep Learning in Medical Image Analysis; 2018. pp. 263\u2013273. Springer.","DOI":"10.1007\/978-3-030-00889-5_30"},{"key":"10198_CR42","doi-asserted-by":"crossref","unstructured":"Shah MP, Merchant S, Awate SP. Ms-net: mixed-supervision fully-convolutional networks for full-resolution segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention; 2018. pp. 379\u2013387. Springer.","DOI":"10.1007\/978-3-030-00937-3_44"},{"key":"10198_CR43","doi-asserted-by":"crossref","unstructured":"Bortsova G, Dubost F, Hogeweg L, Katramados I, Bruijne MD. Semi-supervised medical image segmentation via learning consistency under transformations. In: International Conference on Medical Image Computing and Computer-Assisted Intervention; 2019. pp. 810\u2013818. Springer.","DOI":"10.1007\/978-3-030-32226-7_90"}],"container-title":["Cognitive Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12559-023-10198-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12559-023-10198-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12559-023-10198-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,17]],"date-time":"2024-01-17T07:05:42Z","timestamp":1705475142000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12559-023-10198-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9,7]]},"references-count":43,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2024,1]]}},"alternative-id":["10198"],"URL":"https:\/\/doi.org\/10.1007\/s12559-023-10198-5","relation":{},"ISSN":["1866-9956","1866-9964"],"issn-type":[{"value":"1866-9956","type":"print"},{"value":"1866-9964","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,9,7]]},"assertion":[{"value":"10 April 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 August 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 August 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 September 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"This study is non-human subject research and is exempt from ethical approval by the corresponding author\u2019s university.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical Approval"}},{"value":"The authors declare that they have no conflict of interest.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest"}}]}}