{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T10:40:07Z","timestamp":1723027207527},"reference-count":89,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2022,10,11]],"date-time":"2022-10-11T00:00:00Z","timestamp":1665446400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,10,11]],"date-time":"2022-10-11T00:00:00Z","timestamp":1665446400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100002923","name":"Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas","doi-asserted-by":"publisher","award":["Scientific","Technological Researcher Career program (DI-2019-2516-APN-GRH-CONICET)."],"id":[{"id":"10.13039\/501100002923","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Cogn Comput"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1007\/s12559-022-10064-w","type":"journal-article","created":{"date-parts":[[2022,10,11]],"date-time":"2022-10-11T22:02:27Z","timestamp":1665525747000},"page":"2334-2344","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence"],"prefix":"10.1007","volume":"16","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7166-9738","authenticated-orcid":false,"given":"Jose A.","family":"Fernandez-Leon","sequence":"first","affiliation":[]},{"given":"Gerardo G.","family":"Acosta","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,11]]},"reference":[{"key":"10064_CR1","doi-asserted-by":"crossref","unstructured":"Engelbrecht AP. Computational Intelligence: An Introduction: Second Edition. Computational Intelligence: An Introduction: Second Edition. 2007.","DOI":"10.1002\/9780470512517"},{"key":"10064_CR2","doi-asserted-by":"crossref","unstructured":"Macpherson T, Churchland A, Sejnowski T, DiCarlo J, Kamitani Y, Takahashi H, et al. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Networks. 2021.","DOI":"10.1016\/j.neunet.2021.09.018"},{"key":"10064_CR3","doi-asserted-by":"crossref","unstructured":"Hong G, Lieber CM. Novel electrode technologies for neural recordings. Nat Rev Neurosci. 2019.","DOI":"10.1038\/s41583-019-0140-6"},{"key":"10064_CR4","doi-asserted-by":"crossref","unstructured":"Weisenburger S, Vaziri A. A guide to emerging technologies for large-scale and whole-brain optical imaging of neuronal activity. Ann Rev Neurosci. 2018.","DOI":"10.1146\/annurev-neuro-072116-031458"},{"key":"10064_CR5","doi-asserted-by":"crossref","unstructured":"Friston KJ. Modalities, modes, and models in functional neuroimaging. Science. 2009.","DOI":"10.1126\/science.1174521"},{"key":"10064_CR6","doi-asserted-by":"crossref","unstructured":"Josselyn SA, Tonegawa S. Memory engrams: Recalling the past and imagining the future. Science. 2020.","DOI":"10.1126\/science.aaw4325"},{"key":"10064_CR7","doi-asserted-by":"crossref","unstructured":"Lerner TN, Ye L, Deisseroth K. Communication in Neural Circuits: Tools, Opportunities, and Challenges. Cell. 2016.","DOI":"10.1016\/j.cell.2016.02.027"},{"key":"10064_CR8","doi-asserted-by":"crossref","unstructured":"Buzs\u00e1ki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004.","DOI":"10.1038\/nn1233"},{"key":"10064_CR9","doi-asserted-by":"crossref","unstructured":"Urai AE, Doiron B, Leifer AM, Churchland AK. Large-scale neural recordings call for new insights to link brain and behavior. Nat Neurosci. 2022.","DOI":"10.1038\/s41593-021-00980-9"},{"key":"10064_CR10","doi-asserted-by":"crossref","unstructured":"Hawkins J, Lewis M, Klukas M, Purdy S, Ahmad S. A framework for intelligence and cortical function based on grid cells in the neocortex. Front Neural Circuits. 2019.","DOI":"10.1101\/442418"},{"key":"10064_CR11","doi-asserted-by":"crossref","unstructured":"O\u2019Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971.","DOI":"10.1016\/0006-8993(71)90358-1"},{"key":"10064_CR12","unstructured":"O\u2019Keefe J, Nadel L. Hippocampus as cognitive map. Behav Brain Sci. 1979."},{"key":"10064_CR13","doi-asserted-by":"crossref","unstructured":"Wu X, Zheng Z, Weng J. On Machine Thinking. In: Proceedings of the International Joint Conference on Neural Networks. 2021.","DOI":"10.1109\/IJCNN52387.2021.9533936"},{"key":"10064_CR14","doi-asserted-by":"crossref","unstructured":"O\u2019Keefe J, Krupic J. Do hippocampal pyramidal cells respond to nonspatial stimuli? Physiol Rev. 2021.","DOI":"10.1152\/physrev.00014.2020"},{"key":"10064_CR15","doi-asserted-by":"crossref","unstructured":"Dong C, Madar AD, Sheffield MEJ. Distinct place cell dynamics in CA1 and CA3 encode experience in new environments. Nat Commun. 2021.","DOI":"10.1101\/2020.09.10.292177"},{"key":"10064_CR16","doi-asserted-by":"crossref","unstructured":"Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain\u2019s spatial representation system. Ann Rev Neurosci. 2008.","DOI":"10.1146\/annurev.neuro.31.061307.090723"},{"key":"10064_CR17","doi-asserted-by":"crossref","unstructured":"Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005.","DOI":"10.1038\/nature03721"},{"key":"10064_CR18","doi-asserted-by":"crossref","unstructured":"Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science. (80);2004.","DOI":"10.1126\/science.1099901"},{"key":"10064_CR19","unstructured":"Sorscher B, Mel GC, Ganguli S, Ocko SA. A unified theory for the origin of grid cells through the lens of pattern formation. In: Advances in Neural Information Processing Systems. 2019."},{"key":"10064_CR20","doi-asserted-by":"crossref","unstructured":"Bush D, Barry C, Manson D, Burgess N. Using Grid Cells for Navigation. Neuron. 2015.","DOI":"10.1016\/j.neuron.2015.07.006"},{"key":"10064_CR21","doi-asserted-by":"crossref","unstructured":"McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. Path integration and the neural basis of the \u201ccognitive map.\u201d Nat Rev Neurosci. 2006.","DOI":"10.1038\/nrn1932"},{"key":"10064_CR22","doi-asserted-by":"crossref","unstructured":"Erdem UM, Hasselmo M. A goal-directed spatial navigation model using forward trajectory planning based on grid cells. Eur J Neurosci. 2012.","DOI":"10.1111\/j.1460-9568.2012.08015.x"},{"key":"10064_CR23","doi-asserted-by":"crossref","unstructured":"Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, et al. Toroidal topology of population activity in grid cells. Nature. 2022.","DOI":"10.1101\/2021.02.25.432776"},{"key":"10064_CR24","doi-asserted-by":"crossref","unstructured":"Jacobs LF, Schenk F. Unpacking the Cognitive Map: The Parallel Map Theory of Hippocampal Function. Psychological Review. 2003.","DOI":"10.1037\/0033-295X.110.2.285"},{"key":"10064_CR25","doi-asserted-by":"crossref","unstructured":"Jacobs LF. The evolution of the cognitive map. In: Brain, Behavior and Evolution. 2003.","DOI":"10.1037\/e604022013-092"},{"key":"10064_CR26","doi-asserted-by":"crossref","unstructured":"Redish a. D. Beyond the cognitive map: from place cells to episodic memory. Cambridge, MA MIT Press. 1999.","DOI":"10.7551\/mitpress\/1571.001.0001"},{"key":"10064_CR27","unstructured":"Arkin RC. Behaviour-Based Robotics. Robotics. 1998."},{"key":"10064_CR28","doi-asserted-by":"crossref","unstructured":"Guanella A, Kiper D, Verschure P. A model of grid cells based on a twisted torus topology. In: Int J Neural Sys. 2007.","DOI":"10.1142\/S0129065707001093"},{"key":"10064_CR29","doi-asserted-by":"crossref","unstructured":"Santos-Pata D, Zucca R, Low SC, Verschure PFMJ. Size matters: How scaling affects the interaction between grid and border cells. Front Comput Neurosci. 2017.","DOI":"10.3389\/fncom.2017.00065"},{"key":"10064_CR30","doi-asserted-by":"crossref","unstructured":"Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, et al. Grid cells require excitatory drive from the hippocampus. Nat Neurosci. 2013.","DOI":"10.1038\/nn.3311"},{"key":"10064_CR31","doi-asserted-by":"crossref","unstructured":"Zhao R, Grunke SD, Keralapurath MM, Yetman MJ, Lam A, Lee TC, et al. Impaired Recall of Positional Memory following Chemogenetic Disruption of Place Field Stability. Cell Rep. 2016.","DOI":"10.1016\/j.celrep.2016.06.032"},{"key":"10064_CR32","doi-asserted-by":"crossref","unstructured":"Henriksen EJ, Colgin LL, Barnes CA, Witter MP, Moser MB, Moser EI. Spatial representation along the proximodistal axis of CA1. Neuron. 2010.","DOI":"10.1016\/j.neuron.2010.08.042"},{"key":"10064_CR33","doi-asserted-by":"crossref","unstructured":"Zhang SJ, Ye J, Miao C, Tsao A, Cerniauskas I, Ledergerber D, et al. Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science. (80);2013.","DOI":"10.1126\/science.1232627"},{"key":"10064_CR34","doi-asserted-by":"crossref","unstructured":"Lu L, Leutgeb JK, Tsao A, Henriksen EJ, Leutgeb S, Barnes CA, et al. Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nat Neurosci. 2013.","DOI":"10.1038\/nn.3462"},{"key":"10064_CR35","doi-asserted-by":"crossref","unstructured":"Deadwyler SA, West JR, Cotman CW, Lynch G. Physiological studies of the reciprocal connections between the hippocampus and entorhinal cortex. Exp Neurol. 1975.","DOI":"10.1016\/0014-4886(75)90194-6"},{"key":"10064_CR36","doi-asserted-by":"crossref","unstructured":"Lian Y, Burkitt AN. Learning an efficient hippocampal place map from entorhinal inputs using non-negative sparse coding. eNeuro. 2021.","DOI":"10.1101\/2020.08.12.248534"},{"key":"10064_CR37","doi-asserted-by":"crossref","unstructured":"Dordek Y, Soudry D, Meir R, Derdikman D. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. Elife. 2016.","DOI":"10.7554\/eLife.10094.028"},{"key":"10064_CR38","unstructured":"Edvardsen V. Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network. Nat Comput. 2019."},{"key":"10064_CR39","doi-asserted-by":"crossref","unstructured":"Fernandez-Leon JA, Acosta GG, Mayosky MA. Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation. Rob Auton Syst. 2009.","DOI":"10.1016\/j.robot.2008.06.012"},{"key":"10064_CR40","doi-asserted-by":"crossref","unstructured":"Brooks RA. A Robust Layered Control System For A Mobile Robot. IEEE J Robot Autom. 1986.","DOI":"10.1109\/JRA.1986.1087032"},{"key":"10064_CR41","doi-asserted-by":"crossref","unstructured":"Edvardsen V, Bicanski A, Burgess N. Navigating with grid and place cells in cluttered environments. Hippocampus. 2020.","DOI":"10.1002\/hipo.23147"},{"key":"10064_CR42","doi-asserted-by":"crossref","unstructured":"Tommasi L, Thinus-Blanc C. Generalization in Place Learning and Geometry Knowledge in Rats. Learn Mem. 2004.","DOI":"10.1101\/lm.60904"},{"key":"10064_CR43","doi-asserted-by":"crossref","unstructured":"Krupic J, Bauza M, Burton S, O\u2019Keefe J. Framing the grid: effect of boundaries on grid cells and navigation. J Physiol. 2016.","DOI":"10.1113\/JP270607"},{"key":"10064_CR44","doi-asserted-by":"crossref","unstructured":"Bicanski A, Burgess N. Neuronal vector coding in spatial cognition. Nat Rev Neurosci. 2020.","DOI":"10.1038\/s41583-020-0336-9"},{"key":"10064_CR45","doi-asserted-by":"crossref","unstructured":"Acosta GG, Curti HJ, Calvo OA. Autonomous underwater pipeline inspection in AUTOTRACKER Project: The navigation module. In: Oceans 2005 - Europe. 2005.","DOI":"10.1109\/OCEANSE.2005.1511746"},{"key":"10064_CR46","doi-asserted-by":"crossref","unstructured":"Guanella A, Verschure PFMJ. Prediction of the position of an animal based on populations of grid and place cells: A comparative simulation study. J Integr Neurosci. 2007.","DOI":"10.1142\/S0219635207001556"},{"key":"10064_CR47","doi-asserted-by":"crossref","unstructured":"Greeno JG, Moore JL. Situativity and Symbols: Response to Vera and Simon. Cogn Sci. 1993.","DOI":"10.1207\/s15516709cog1701_3"},{"key":"10064_CR48","doi-asserted-by":"crossref","unstructured":"Mountcastle VB. Modality and topographic properties of single neurons of cat\u2019s somatic sensory cortex. J Neurophysiol. 1957.","DOI":"10.1152\/jn.1957.20.4.408"},{"key":"10064_CR49","doi-asserted-by":"crossref","unstructured":"Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat\u2019s striate cortex. J Physiol. 1959.","DOI":"10.1113\/jphysiol.1959.sp006308"},{"key":"10064_CR50","doi-asserted-by":"crossref","unstructured":"Hawkins J, Ahmad S, Cui Y. A theory of how columns in the neocortex enable learning the structure of the world. Front Neural Circuits. 2017.","DOI":"10.1101\/162263"},{"key":"10064_CR51","doi-asserted-by":"crossref","unstructured":"Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, et al. Hierarchical organization of cortical and thalamic connectivity. Nature. 2019.","DOI":"10.1038\/s41586-019-1716-z"},{"key":"10064_CR52","doi-asserted-by":"crossref","unstructured":"Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991.","DOI":"10.1093\/cercor\/1.1.1"},{"key":"10064_CR53","unstructured":"Barlow H. Sensory Mechanisms, the Reduction of Redundancy, and Intelligence. NPL Symp Mech Thought Process. 1959."},{"key":"10064_CR54","doi-asserted-by":"crossref","unstructured":"F\u00f6ldi\u00e1k P. Forming sparse representations by local anti-Hebbian learning. Biol Cybern. 1990.","DOI":"10.1007\/BF00202929"},{"key":"10064_CR55","doi-asserted-by":"crossref","unstructured":"Bell AJ, Sejnowski TJ. The \u201cindependent components\u201d of natural scenes are edge filters. Vision Res. 1997.","DOI":"10.1016\/S0042-6989(97)00121-1"},{"key":"10064_CR56","doi-asserted-by":"crossref","unstructured":"Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996.","DOI":"10.1038\/381607a0"},{"key":"10064_CR57","doi-asserted-by":"crossref","unstructured":"Chalk M, Marre O, Tka\u010dik G. Toward a unified theory of efficient, predictive, and sparse coding. Proc Natl Acad Sci USA. 2018.","DOI":"10.1101\/152660"},{"key":"10064_CR58","doi-asserted-by":"crossref","unstructured":"Clayton NS, Salwiczek LH, Dickinson A. Episodic memory. Curr Biol. 2007.","DOI":"10.1016\/j.cub.2007.01.011"},{"key":"10064_CR59","doi-asserted-by":"crossref","unstructured":"Ocko SA, Hardcastle K, Giocomo LM, Ganguli S. Emergent elasticity in the neural code for space. Proc Natl Acad Sci USA. 2018.","DOI":"10.1101\/326793"},{"key":"10064_CR60","doi-asserted-by":"crossref","unstructured":"Colgin LL, Moser EI, Moser MB. Understanding memory through hippocampal remapping. Trends in Neurosci. 2008.","DOI":"10.1016\/j.tins.2008.06.008"},{"key":"10064_CR61","doi-asserted-by":"crossref","unstructured":"Muller RU, Kubie JL. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci. 1987.","DOI":"10.1523\/JNEUROSCI.07-07-01951.1987"},{"key":"10064_CR62","doi-asserted-by":"crossref","unstructured":"Minsky M. Steps Toward Artificial Intelligence. Proceedings of the IRE. 1961.","DOI":"10.1109\/JRPROC.1961.287775"},{"key":"10064_CR63","doi-asserted-by":"crossref","unstructured":"Banino A, Barry C, Uria B, Blundell C, Lillicrap T, Mirowski P, et al. Vector-based navigation using grid-like representations in artificial agents. Nature. 2018.","DOI":"10.1038\/s41586-018-0102-6"},{"key":"10064_CR64","doi-asserted-by":"crossref","unstructured":"Andersson SO, Moser EI, Moser MB. Visual stimulus features that elicit activity in object-vector cells. Commun Biol. 2021.","DOI":"10.1101\/2021.06.03.446869"},{"key":"10064_CR65","doi-asserted-by":"crossref","unstructured":"Fuhs MC, Redish AD, Touretzky DS. A Visually Driven Hippocampal Place Cell Model. In: Comp Neurosci. 1998.","DOI":"10.1007\/978-1-4615-4831-7_63"},{"key":"10064_CR66","doi-asserted-by":"crossref","unstructured":"O\u2019keefe J, Conway DH. Experimental Brain Research Hippocampal Place Units in the Freely Moving Rat: Why They Fire Where They Fire. Brain Res. 1978.","DOI":"10.1007\/BF00239813"},{"key":"10064_CR67","doi-asserted-by":"crossref","unstructured":"H\u00f8ydal \u00d8A, Skyt\u00f8en ER, Andersson SO, Moser MB, Moser EI. Object-vector coding in the medial entorhinal cortex. Nature. 2019.","DOI":"10.1101\/286286"},{"key":"10064_CR68","doi-asserted-by":"crossref","unstructured":"Barry C, Lever C, Hayman R, Hartley T, Burton S, O\u2019Keefe J, et al. The boundary vector cell model of place cell firing and spatial memory. Rev Neurosci. 2006.","DOI":"10.1515\/REVNEURO.2006.17.1-2.71"},{"key":"10064_CR69","doi-asserted-by":"crossref","unstructured":"Lever C, Burton S, Jeewajee A, O\u2019Keefe J, Burgess N. Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci. 2009.","DOI":"10.1523\/JNEUROSCI.1319-09.2009"},{"key":"10064_CR70","doi-asserted-by":"crossref","unstructured":"O\u2019Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993.","DOI":"10.1002\/hipo.450030307"},{"key":"10064_CR71","doi-asserted-by":"crossref","unstructured":"Burgess N, O\u2019Keefe J. Models of place and grid cell firing and theta rhythmicity. Curr Opin Neurobiol. 2011.","DOI":"10.1016\/j.conb.2011.07.002"},{"key":"10064_CR72","doi-asserted-by":"crossref","unstructured":"Jercog PE, Ahmadian Y, Woodruff C, Deb-Sen R, Abbott LF, Kandel ER. Heading direction with respect to a reference point modulates place-cell activity. Nat Commun. 2019.","DOI":"10.1101\/433516"},{"key":"10064_CR73","doi-asserted-by":"crossref","unstructured":"Wang Y, Xu X, Wang R. An energy model of place cell network in three dimensional space. Front Neurosci. 2018.","DOI":"10.3389\/fnins.2018.00264"},{"key":"10064_CR74","doi-asserted-by":"crossref","unstructured":"Sarel A, Finkelstein A, Las L, Ulanovsky N. Vectorial representation of spatial goals in the hippocampus of bats. Science. 2017;(80).","DOI":"10.1126\/science.aak9589"},{"key":"10064_CR75","doi-asserted-by":"crossref","unstructured":"LaChance PA, Todd TP, Taube JS. A sense of space in postrhinal cortex. Science. 2019;(80).","DOI":"10.1126\/science.aax4192"},{"key":"10064_CR76","doi-asserted-by":"crossref","unstructured":"Boccara CN, Sargolini F, Thoresen VH, Solstad T, Witter MP, Moser EI, et al. Grid cells in pre-and parasubiculum. Nat Neurosci. 2010.","DOI":"10.1038\/nn.2602"},{"key":"10064_CR77","doi-asserted-by":"crossref","unstructured":"Taube JS, Muller RU, Ranck JB. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci. 1990.","DOI":"10.1523\/JNEUROSCI.10-02-00420.1990"},{"key":"10064_CR78","doi-asserted-by":"crossref","unstructured":"Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science. 2006;(80).","DOI":"10.1126\/science.1125572"},{"key":"10064_CR79","doi-asserted-by":"crossref","unstructured":"Kropff E, Carmichael JE, Moser MB, Moser EI. Speed cells in the medial entorhinal cortex. Nature. 2015.","DOI":"10.1038\/nature14622"},{"key":"10064_CR80","doi-asserted-by":"crossref","unstructured":"Kropff E, Carmichael JE, Moser EI, Moser MB. Frequency of theta rhythm is controlled by acceleration, but not speed, in running rats. Neuron. 2021.","DOI":"10.1016\/j.neuron.2021.01.017"},{"key":"10064_CR81","doi-asserted-by":"crossref","unstructured":"Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI. Representation of geometric borders in the entorhinal cortex. Science. 2008;(80).","DOI":"10.1126\/science.1166466"},{"key":"10064_CR82","doi-asserted-by":"crossref","unstructured":"Moser EI, Moser MB. Hippocampus and Neural Representations. In: Encyclopedia of Neuroscience. 2009.","DOI":"10.1016\/B978-008045046-9.00767-1"},{"key":"10064_CR83","doi-asserted-by":"crossref","unstructured":"Touretzky DS, Redish AD. Theory of rodent navigation based on interacting representations of space. Hippocampus. 1996.","DOI":"10.1002\/(SICI)1098-1063(1996)6:3<247::AID-HIPO4>3.3.CO;2-W"},{"key":"10064_CR84","doi-asserted-by":"crossref","unstructured":"Burgess N, Recce M, O\u2019Keefe J. A model of hippocampal function. Neural Networks. 1994.","DOI":"10.1016\/S0893-6080(05)80159-5"},{"key":"10064_CR85","doi-asserted-by":"crossref","unstructured":"Jeffery KJ, Anderson MI, Hayman R, Chakraborty S. A proposed architecture for the neural representation of spatial context. Neurosci Biobehav Rev. 2004.","DOI":"10.1093\/acprof:oso\/9780198515241.003.0015"},{"key":"10064_CR86","unstructured":"Dayan P, Abbott LF. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Comp Mathematical Model Neural.\u00a02001."},{"key":"10064_CR87","doi-asserted-by":"crossref","unstructured":"Wiskott L, Sejnowski TJ. Slow feature analysis: Unsupervised learning of invariances. Neural Comput. 2002.","DOI":"10.1162\/089976602317318938"},{"key":"10064_CR88","unstructured":"Cepelewicz J. The brain maps out ideas and memories like spaces. Quanta. 2019."},{"key":"10064_CR89","doi-asserted-by":"crossref","unstructured":"Roe AW. Columnar connectome: Toward a mathematics of brain function. Netw Neurosci. 2019.","DOI":"10.1162\/netn_a_00088"}],"container-title":["Cognitive Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12559-022-10064-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12559-022-10064-w\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12559-022-10064-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T09:53:14Z","timestamp":1723024394000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12559-022-10064-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,11]]},"references-count":89,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2024,9]]}},"alternative-id":["10064"],"URL":"https:\/\/doi.org\/10.1007\/s12559-022-10064-w","relation":{},"ISSN":["1866-9956","1866-9964"],"issn-type":[{"type":"print","value":"1866-9956"},{"type":"electronic","value":"1866-9964"}],"subject":[],"published":{"date-parts":[[2022,10,11]]},"assertion":[{"value":"15 February 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 October 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 October 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"None declared. This is a theoretical\/computational study. No ethical approval is required.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics Approval"}}]}}