{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T04:16:23Z","timestamp":1728188183169},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2022,10,10]],"date-time":"2022-10-10T00:00:00Z","timestamp":1665360000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,10,10]],"date-time":"2022-10-10T00:00:00Z","timestamp":1665360000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/fund","name":"Natural Science Foundation of Southwest University of Science and Technology","doi-asserted-by":"publisher","award":["22zx7101"],"id":[{"id":"10.13039\/fund","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62106209"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/fund","name":"Public Welfare Technology Application Research Project of Zhejiang Province","doi-asserted-by":"publisher","award":["LGF21F020003"],"id":[{"id":"10.13039\/fund","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Open Project Program of the State Key Lab of CAD &CG","award":["A2217"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Cogn Comput"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1007\/s12559-022-10060-0","type":"journal-article","created":{"date-parts":[[2022,10,10]],"date-time":"2022-10-10T13:28:49Z","timestamp":1665408529000},"page":"552-564","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["One-Stage Multi-view Clustering with Hierarchical Attributes Extraction"],"prefix":"10.1007","volume":"15","author":[{"given":"Yong","family":"Mi","sequence":"first","affiliation":[]},{"given":"Jian","family":"Dai","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3791-9750","authenticated-orcid":false,"given":"Zhenwen","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Xiaojian","family":"You","sequence":"additional","affiliation":[]},{"given":"Yanlong","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,10]]},"reference":[{"issue":"4","key":"10060_CR1","doi-asserted-by":"publisher","first-page":"1049","DOI":"10.1007\/s12559-021-09889-8","volume":"13","author":"J Dai","year":"2021","unstructured":"Dai J, Ren Z, Luo Y, Song H, Yang J. Multi-view clustering with latent low-rank proxy graph learning. Cogn Comput. 2021;13(4):1049\u201360.","journal-title":"Cogn Comput"},{"key":"10060_CR2","doi-asserted-by":"crossref","unstructured":"Liu J, Liu X, Wang S, Zhou S, Yang Y. Hierarchical multiple kernel clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021. p. 8671\u20139.\u00a0(vol 35).","DOI":"10.1609\/aaai.v35i10.17051"},{"issue":"5","key":"10060_CR3","doi-asserted-by":"crossref","first-page":"2402","DOI":"10.1109\/TPAMI.2020.3036956","volume":"44","author":"C Zhang","year":"2022","unstructured":"Zhang C, Cui Y, Han Z, Zhou JT, Fu H, Hu Q. Deep partial multi-view learning. IEEE Trans Pattern Anal Mach Intell. 2022;44(5):2402\u201315.","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10060_CR4","doi-asserted-by":"crossref","unstructured":"Huang S, Kang Z, Xu Z, Liu Q. Robust deep k-means: an effective and simple method for data clustering. Pattern Recogn. 2021;117:107996.","DOI":"10.1016\/j.patcog.2021.107996"},{"key":"10060_CR5","doi-asserted-by":"crossref","unstructured":"Lin Z, Kang Z.\u00a0Graph filter-based multi-view attributed graph clustering. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI.\u00a02021. p. 19\u201326.","DOI":"10.24963\/ijcai.2021\/375"},{"key":"10060_CR6","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1016\/j.ins.2019.09.079","volume":"512","author":"S Huang","year":"2020","unstructured":"Huang S, Xu Z, Tsang IW, Kang Z. Auto-weighted multi-view co-clustering with bipartite graphs. Inf Sci. 2020;512:18\u201330.","journal-title":"Inf Sci"},{"issue":"11","key":"10060_CR7","doi-asserted-by":"publisher","first-page":"2837","DOI":"10.1109\/TMM.2019.2909860","volume":"21","author":"C Tang","year":"2019","unstructured":"Tang C, Liu X, Wang P, Zhang C, Li M, Wang L. Adaptive hypergraph embedded semi-supervised multi-label image annotation. IEEE Trans Multimedia. 2019;21(11):2837\u201349.","journal-title":"IEEE Trans Multimedia"},{"key":"10060_CR8","doi-asserted-by":"publisher","first-page":"5252","DOI":"10.1109\/TIP.2021.3079800","volume":"30","author":"J Lv","year":"2021","unstructured":"Lv J, Kang Z, Lu X, Xu Z. Pseudo-supervised deep subspace clustering. IEEE Trans Image Process. 2021;30:5252\u201363.","journal-title":"IEEE Trans Image Process"},{"key":"10060_CR9","doi-asserted-by":"publisher","first-page":"8547","DOI":"10.1609\/aaai.v35i10.17037","volume":"35","author":"Y Li","year":"2021","unstructured":"Li Y, Hu P, Liu Z, Peng D, Zhou JT, Peng X. Contrastive clustering. Proceedings of the AAAI Conference on Artificial Intelligence. 2021;35:8547\u201355.","journal-title":"Proceedings of the AAAI Conference on Artificial Intelligence"},{"key":"10060_CR10","doi-asserted-by":"crossref","unstructured":"Nie F, Shi S, Li X. Auto-weighted multi-view co-clustering via fast matrix factorization. Pattern Recogn. 2020;102:107207.","DOI":"10.1016\/j.patcog.2020.107207"},{"key":"10060_CR11","doi-asserted-by":"publisher","first-page":"4623","DOI":"10.1109\/TSP.2021.3101979","volume":"69","author":"S Du","year":"2021","unstructured":"Du S, Liu Z, Chen Z, Yang W, Wang S. Differentiable bi-sparse multi-view co-clustering. IEEE Trans Signal Process. 2021;69:4623\u201336.","journal-title":"IEEE Trans Signal Process"},{"issue":"5","key":"10060_CR12","doi-asserted-by":"publisher","first-page":"1839","DOI":"10.1109\/TNNLS.2020.2991366","volume":"32","author":"Z Ren","year":"2020","unstructured":"Ren Z, Sun Q. Simultaneous global and local graph structure preserving for multiple kernel clustering. IEEE Trans Neural Netw Learn Syst. 2020;32(5):1839\u201351.","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"10060_CR13","doi-asserted-by":"crossref","unstructured":"Ren Z, Yang SX, Sun Q, Wang T.\u00a0Consensus affinity graph learning for multiple kernel clustering.\u00a0IEEE Trans Cybern.\u00a02020a;51(6):3273\u20133284.","DOI":"10.1109\/TCYB.2020.3000947"},{"key":"10060_CR14","doi-asserted-by":"crossref","unstructured":"Ren Z, Mukherjee M, Bennis M, Lloret J.\u00a0Multikernel clustering via non-negative matrix factorization tailored graph tensor over distributed networks.\u00a0IEEE J Sel Areas Commun.\u00a02020b;39(7):1946\u20131956.","DOI":"10.1109\/JSAC.2020.3041396"},{"key":"10060_CR15","unstructured":"Zhang T, Liu X, Gong L, Wang S, Niu X, Shen L.\u00a0Late fusion multiple kernel clustering with local kernel alignment maximization. IEEE Trans Multimedia.\u00a02021."},{"key":"10060_CR16","doi-asserted-by":"crossref","unstructured":"Ren Z, Sun Q, Wei D. Multiple kernel clustering with kernel k-means coupled graph tensor learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021. p.\u00a09411\u20138.\u00a0(vol 35).","DOI":"10.1609\/aaai.v35i11.17134"},{"key":"10060_CR17","doi-asserted-by":"crossref","unstructured":"Huang S, Tsang I, Xu Z, Lv JC.\u00a0Measuring diversity in graph learning: a unified framework for structured multi-view clustering.\u00a0IEEE Trans Knowl Data Eng.\u00a02021.","DOI":"10.1109\/TKDE.2021.3068461"},{"key":"10060_CR18","doi-asserted-by":"crossref","unstructured":"Lin Z, Kang Z, Zhang L, Tian L.\u00a0Multi-view attributed graph clustering.\u00a0IEEE Trans Knowl Data Eng.\u00a02021.","DOI":"10.24963\/ijcai.2021\/375"},{"issue":"6","key":"10060_CR19","doi-asserted-by":"publisher","first-page":"1116","DOI":"10.1109\/TKDE.2019.2903810","volume":"32","author":"H Wang","year":"2019","unstructured":"Wang H, Yang Y, Liu B. GMC: graph-based multi-view clustering. IEEE Trans Knowl Data Eng. 2019;32(6):1116\u201329.","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"10060_CR20","first-page":"2148","volume":"34","author":"E Pan","year":"2021","unstructured":"Pan E, Kang Z. Multi-view contrastive graph clustering. Adv Neural Inf Process Syst. 2021;34:2148\u201359.","journal-title":"Adv Neural Inf Process Syst"},{"key":"10060_CR21","doi-asserted-by":"crossref","unstructured":"Kang Z, Peng C, Cheng Q, Liu X, Peng X, Xu Z, Tian L. Structured graph learning for clustering and semi-supervised classification. Pattern Recogn. 2021;110:107627.","DOI":"10.1016\/j.patcog.2020.107627"},{"key":"10060_CR22","doi-asserted-by":"crossref","unstructured":"Chen MS, Huang L, Wang CD, Huang D. Multi-view clustering in latent embedding space. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020. p.\u00a03513\u201320. (vol 34).","DOI":"10.1609\/aaai.v34i04.5756"},{"key":"10060_CR23","doi-asserted-by":"publisher","first-page":"410","DOI":"10.1016\/j.ins.2021.01.033","volume":"560","author":"J Lv","year":"2021","unstructured":"Lv J, Kang Z, Wang B, Ji L, Xu Z. Multi-view subspace clustering via partition fusion. Inf Sci. 2021;560:410\u201323.","journal-title":"Inf Sci"},{"key":"10060_CR24","doi-asserted-by":"crossref","unstructured":"Zhao H, Ding Z, Fu Y. Multi-view clustering via deep matrix factorization. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2017. p.\u00a02921\u20137. (vol 31).","DOI":"10.1609\/aaai.v31i1.10867"},{"key":"10060_CR25","doi-asserted-by":"crossref","unstructured":"Liang N, Yang Z, Li Z, Sun W, Xie S. Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints. Knowl-Based Syst. 2020;194:105582.","DOI":"10.1016\/j.knosys.2020.105582"},{"key":"10060_CR26","doi-asserted-by":"crossref","unstructured":"Liu J, Wang C, Gao J, Han J.\u00a0Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM.\u00a02013. p 252\u201360.","DOI":"10.1137\/1.9781611972832.28"},{"key":"10060_CR27","doi-asserted-by":"crossref","unstructured":"Liu J, Liu X, Yang Y, Liu L, Wang S, Liang W, Shi J.\u00a0One-pass multi-view clustering for large-scale data. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision.\u00a02021. p 12344\u201353.","DOI":"10.1109\/ICCV48922.2021.01212"},{"key":"10060_CR28","doi-asserted-by":"crossref","unstructured":"Li G, Geng J, Liu J, Han K.\u00a0Multi-graph constraint matrix factorization for multi-view image clustering. In: 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). IEEE;\u00a02020. p. 415\u201318.","DOI":"10.1109\/ICBASE51474.2020.00094"},{"issue":"6755","key":"10060_CR29","doi-asserted-by":"publisher","first-page":"788","DOI":"10.1038\/44565","volume":"401","author":"DD Lee","year":"1999","unstructured":"Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature. 1999;401(6755):788\u201391.","journal-title":"Nature"},{"key":"10060_CR30","unstructured":"Cai X, Nie F, Huang H.\u00a0Multi-view k-means clustering on big data. In: Proceedings of the Twenty-Third International Joint Conference On Artificial Intelligence.\u00a02013. p. 2598\u2013604."},{"key":"10060_CR31","doi-asserted-by":"crossref","unstructured":"Nie F, Shi S, Li J, Li X.\u00a0Implicit weight learning for multi-view clustering.\u00a0IEEE Trans Neural Netw Learn Syst.\u00a02021.","DOI":"10.1109\/TNNLS.2021.3121246"},{"key":"10060_CR32","doi-asserted-by":"crossref","unstructured":"Huang S, Kang Z, Xu Z.\u00a0Deep k-means: a simple and effective method for data clustering. In: International Conference on Neural Computing for Advanced Applications. Springer;\u00a02020. p. 272\u201383.","DOI":"10.1007\/978-981-15-7670-6_23"},{"key":"10060_CR33","doi-asserted-by":"crossref","unstructured":"Wu T, Zhang R, Jiao Z, Wei X, Li X.\u00a0Adaptive spectral rotation via joint cluster and pairwise structure.\u00a0IEEE Trans Knowl Data Eng.\u00a02021.","DOI":"10.1109\/TKDE.2021.3076521"},{"key":"10060_CR34","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1016\/j.neunet.2017.02.003","volume":"88","author":"L Zong","year":"2017","unstructured":"Zong L, Zhang X, Zhao L, Yu H, Zhao Q. Multi-view clustering via multi-manifold regularized non-negative matrix factorization. Neural Netw. 2017;88:74\u201389.","journal-title":"Neural Netw"},{"issue":"4","key":"10060_CR35","doi-asserted-by":"publisher","first-page":"2956","DOI":"10.1109\/TII.2020.3010357","volume":"17","author":"Z Ren","year":"2020","unstructured":"Ren Z, Mukherjee M, Lloret J, Venu P. Multiple kernel driven clustering with locally consistent and selfish graph in industrial IoT. IEEE Trans Industr Inf. 2020;17(4):2956\u201363.","journal-title":"IEEE Trans Industr Inf"},{"issue":"1","key":"10060_CR36","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1109\/TPAMI.2008.277","volume":"32","author":"CH Ding","year":"2008","unstructured":"Ding CH, Li T, Jordan MI. Convex and semi-nonnegative matrix factorizations. IEEE Trans Pattern Anal Mach Intell. 2008;32(1):45\u201355.","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10060_CR37","doi-asserted-by":"publisher","first-page":"2207","DOI":"10.1109\/TIP.2021.3050677","volume":"30","author":"B Xu","year":"2021","unstructured":"Xu B, Zeng Z, Lian C, Ding Z. Semi-supervised low-rank semantics grouping for zero-shot learning. IEEE Trans Image Process. 2021;30:2207\u201319.","journal-title":"IEEE Trans Image Process"},{"key":"10060_CR38","unstructured":"Liu X, Liu L, Liao Q, Wang S, Zhang Y, Tu W, Tang C, Liu J, Zhu E.\u00a0One pass late fusion multi-view clustering. In: International Conference on Machine Learning, PMLR.\u00a02021. p. 6850\u201359."},{"key":"10060_CR39","doi-asserted-by":"crossref","unstructured":"Zhang C, Hu Q, Fu H, Zhu P, Cao X.\u00a0Latent multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.\u00a02017. p. 4279\u201387.","DOI":"10.1109\/CVPR.2017.461"},{"key":"10060_CR40","doi-asserted-by":"crossref","unstructured":"Tang C, Liu X, Zhu X, Zhu E, Luo Z, Wang L, Gao W. CGD: multi-view clustering via cross-view graph diffusion. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020. p.\u00a05924\u201331. (vol 34).","DOI":"10.1609\/aaai.v34i04.6052"}],"container-title":["Cognitive Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12559-022-10060-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12559-022-10060-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12559-022-10060-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,5]],"date-time":"2024-10-05T13:51:05Z","timestamp":1728136265000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12559-022-10060-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,10]]},"references-count":40,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2023,3]]}},"alternative-id":["10060"],"URL":"https:\/\/doi.org\/10.1007\/s12559-022-10060-0","relation":{},"ISSN":["1866-9956","1866-9964"],"issn-type":[{"type":"print","value":"1866-9956"},{"type":"electronic","value":"1866-9964"}],"subject":[],"published":{"date-parts":[[2022,10,10]]},"assertion":[{"value":"2 May 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 September 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 October 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"Not applicable.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics Approval"}},{"value":"Not applicable.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent to Participate"}},{"value":"The authors declare no competing interests.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest"}}]}}