{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T07:08:05Z","timestamp":1726124885836},"reference-count":57,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2022,6,3]],"date-time":"2022-06-03T00:00:00Z","timestamp":1654214400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,6,3]],"date-time":"2022-06-03T00:00:00Z","timestamp":1654214400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"name":"National Scientific Foundation of China","award":["82170110"]},{"name":"Shanghai Pujiang Program","award":["20PJ1402400"]},{"name":"Zhongshan Hospital Clinical Research Foundation","award":["2019ZSGG15"]},{"DOI":"10.13039\/501100003399","name":"Science and Technology Commission of Shanghai Municipality","doi-asserted-by":"publisher","award":["20DZ2254400"],"id":[{"id":"10.13039\/501100003399","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Cogn Comput"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1007\/s12559-022-10032-4","type":"journal-article","created":{"date-parts":[[2022,6,3]],"date-time":"2022-06-03T10:03:23Z","timestamp":1654250603000},"page":"1362-1377","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":16,"title":["MXT: A New Variant of Pyramid Vision Transformer for Multi-label Chest X-ray Image Classification"],"prefix":"10.1007","volume":"14","author":[{"given":"Xiaoben","family":"Jiang","sequence":"first","affiliation":[]},{"given":"Yu","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Gan","family":"Cai","sequence":"additional","affiliation":[]},{"given":"Bingbing","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Dawei","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,6,3]]},"reference":[{"key":"10032_CR1","unstructured":"WHO. WHO Coronavirus (COVID-19) Dashboard. 2021. https:\/\/covid19.who.int\/."},{"key":"10032_CR2","doi-asserted-by":"publisher","first-page":"988","DOI":"10.1016\/j.idm.2021.08.001","volume":"6","author":"F Xia","year":"2021","unstructured":"Xia F, Yang X, Cheke RA, Xiao Y. Quantifying competitive advantages of mutant strains in a population involving importation and mass vaccination rollout. Infectious Disease Modelling. 2021;6:988\u201396.","journal-title":"Infectious Disease Modelling"},{"key":"10032_CR3","doi-asserted-by":"crossref","unstructured":"Paul A, Basu A, Mahmud M, Kaiser MS, Sarkar R. Inverted bell-curve-based ensemble of deep learning models for detection of COVID-19 from chest X-rays. Neural Comput Applic. 2022:1\u201315.","DOI":"10.1007\/s00521-021-06737-6"},{"key":"10032_CR4","doi-asserted-by":"publisher","DOI":"10.1016\/j.scs.2021.103252","volume":"75","author":"N Prakash","year":"2021","unstructured":"Prakash N, Murugappan M, Hemalakshmi G, Jayalakshmi M, Mahmud M. Deep transfer learning for COVID-19 detection and infection localization with superpixel based segmentation. Sustainable Cities Society & Natural Resources. 2021;75: 103252.","journal-title":"Sustainable Cities Society & Natural Resources"},{"key":"10032_CR5","doi-asserted-by":"crossref","unstructured":"Kumar S, Viral R, Deep V, Sharma P, Kumar, M, Mahmud M, et al. Forecasting major impacts of COVID-19 pandemic on country-driven sectors: challenges, lessons, and future roadmap. Personal Ubiquit Comput. 2021:1\u201324.","DOI":"10.1007\/s00779-021-01530-7"},{"key":"10032_CR6","doi-asserted-by":"crossref","unstructured":"Gomes JC, Barbosa VAdF, Santana MA, Bandeira J, Valen\u00e7a MJS, de Souza RE, et al. IKONOS: an intelligent tool to support diagnosis of COVID-19 by texture analysis of X-ray images. Research on Biomedical Engineering. 2020:1\u201314.","DOI":"10.1101\/2020.05.05.20092346"},{"issue":"1","key":"10032_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s13755-020-00116-6","volume":"8","author":"AM Ismael","year":"2020","unstructured":"Ismael AM, \u015eeng\u00fcr A. The investigation of multiresolution approaches for chest X-ray image based COVID-19 detection. Health Information Science Systems. 2020;8(1):1\u201311.","journal-title":"Health Information Science Systems"},{"key":"10032_CR8","doi-asserted-by":"crossref","unstructured":"Gomes JC, Masood AI, Silva LHdS, da Cruz Ferreira JRB, Freire Junior AA, Rocha ALdS, et al. Covid-19 diagnosis by combining RT-PCR and pseudo-convolutional machines to characterize virus sequences. Sci Rep. 2021;11(1):1\u201328.","DOI":"10.1038\/s41598-021-90766-7"},{"key":"10032_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.114054","volume":"164","author":"AM Ismael","year":"2021","unstructured":"Ismael AM, \u015eeng\u00fcr A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst Appl. 2021;164: 114054.","journal-title":"Expert Syst Appl"},{"issue":"5","key":"10032_CR10","doi-asserted-by":"publisher","first-page":"440","DOI":"10.1177\/0148607106030005440","volume":"30","author":"R Sorokin","year":"2006","unstructured":"Sorokin R, Gottlieb JE. Enhancing patient safety during feeding-tube insertion: a review of more than 2000 insertions. J Parenter Enter Nutr. 2006;30(5):440\u20135.","journal-title":"J Parenter Enter Nutr"},{"issue":"1","key":"10032_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/cc650","volume":"4","author":"R Lotano","year":"2000","unstructured":"Lotano R, Gerber D, Aseron C, Santarelli R, Pratter M. Utility of postintubation chest radiographs in the intensive care unit. Crit Care. 2000;4(1):1\u20134.","journal-title":"Crit Care"},{"key":"10032_CR12","doi-asserted-by":"crossref","unstructured":"Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Conference on Computer Vision and Pattern Recognition (CVPR). 2017; pp. 2097\u20132106.","DOI":"10.1109\/CVPR.2017.369"},{"key":"10032_CR13","doi-asserted-by":"crossref","unstructured":"Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 2019; pp. 590\u2013597.","DOI":"10.1609\/aaai.v33i01.3301590"},{"key":"10032_CR14","doi-asserted-by":"crossref","unstructured":"Mahapatra, D, Bozorgtabar, B, Garnavi, R, Graphics. Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput Med Imaging Graph. 2019;71:30\u201339.","DOI":"10.1016\/j.compmedimag.2018.10.005"},{"key":"10032_CR15","doi-asserted-by":"publisher","first-page":"12319","DOI":"10.1109\/ACCESS.2018.2871626","volume":"7","author":"S Zhang","year":"2018","unstructured":"Zhang S, Liang G, Pan S, Zheng L. A fast medical image super resolution method based on deep learning network. IEEE Access. 2018;7:12319\u201327.","journal-title":"IEEE Access"},{"key":"10032_CR16","unstructured":"Bellver M, Maninis K-K, Pont-Tuset J, Gir\u00f3-i-Nieto X, Torres J, Van Gool L. Detection-aided liver lesion segmentation using deep learning. 2017. arXiv preprint arXiv: 1711.11069."},{"issue":"2","key":"10032_CR17","first-page":"458","volume":"4","author":"F Rashid Sheykhahmad","year":"2015","unstructured":"Rashid Sheykhahmad F, Razmjooy N, Ramezani M. A novel method for skin lesion segmentation. International Journal of Information, Security Systems Management. 2015;4(2):458\u201366.","journal-title":"International Journal of Information, Security Systems Management"},{"key":"10032_CR18","unstructured":"Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. 2017. arXiv preprint arXiv: 1711.05225."},{"key":"10032_CR19","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1016\/j.compmedimag.2019.05.005","volume":"75","author":"H Liu","year":"2019","unstructured":"Liu H, Wang L, Nan Y, Jin F, Wang Q, Pu J. SDFN: Segmentation-based deep fusion network for thoracic disease classification in chest X-ray images. Comput Med Imaging Graphics. 2019;75:66\u201373.","journal-title":"Comput Med Imaging Graphics"},{"key":"10032_CR20","unstructured":"Yao L, Prosky J, Poblenz E, Covington B, Lyman K. Weakly supervised medical diagnosis and localization from multiple resolutions. 2018. arXiv preprint arXiv: 1803.07703."},{"issue":"2","key":"10032_CR21","doi-asserted-by":"publisher","first-page":"475","DOI":"10.1109\/JBHI.2019.2928369","volume":"24","author":"H Wang","year":"2019","unstructured":"Wang H, Jia H, Lu L, Xia Y. Thorax-net: an attention regularized deep neural network for classification of thoracic diseases on chest radiography. IEEE J Biomed Health Inform. 2019;24(2):475\u201385.","journal-title":"IEEE J Biomed Health Inform"},{"key":"10032_CR22","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1016\/j.patrec.2018.10.027","volume":"130","author":"Q Guan","year":"2020","unstructured":"Guan Q, Huang Y. Multi-label chest X-ray image classification via category-wise residual attention learning. Pattern Recog Lett. 2020;130:259\u201366.","journal-title":"Pattern Recog Lett"},{"key":"10032_CR23","unstructured":"Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, et al. Transunet: Transformers make strong encoders for medical image segmentation. 2021. arXiv preprint arXiv: 2102.04306."},{"key":"10032_CR24","unstructured":"Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Neural Information Processing Systems (NIPS). 2017; pp. 5998\u20136008."},{"key":"10032_CR25","unstructured":"Chen M, Radford A, Child R, Wu J, Jun H, Luan D, et al. Generative pretraining from pixels. Conference on Machine Learning (PMLR). 2020. pp. 1691\u20131703."},{"key":"10032_CR26","unstructured":"Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. An image is worth 16x16 words: transformers for image recognition at scale. 2020. arXiv preprint arXiv: 2010.11929."},{"key":"10032_CR27","unstructured":"Zhu X, Su W, Lu L, Li B, Wang X, Dai J. Deformable DETR: deformable transformers for end-to-end object detection. 2020. arXiv preprint arXiv: 2010.04159."},{"key":"10032_CR28","doi-asserted-by":"crossref","unstructured":"Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer: hierarchical vision transformer using shifted windows. 2021. arXiv preprint arXiv: 2103.14030.","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"10032_CR29","doi-asserted-by":"crossref","unstructured":"Graham B, El-Nouby A, Touvron H, Stock P, Joulin A, J\u00e9gou H, et al. LeViT: a vision transformer in convNet's clothing for faster inference. 2021. arXiv preprint arXiv: 2104.01136.","DOI":"10.1109\/ICCV48922.2021.01204"},{"key":"10032_CR30","unstructured":"Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, J\u00e9gou H. Training data-efficient image transformers & distillation through attention. 2020. arXiv preprint arXiv: 2012.12877."},{"key":"10032_CR31","doi-asserted-by":"crossref","unstructured":"Wang W, Xie E, Li X, Fan D-P, Song K, Liang D, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. 2021. arXiv preprint arXiv: 2102.12122.","DOI":"10.1109\/ICCV48922.2021.00061"},{"key":"10032_CR32","unstructured":"Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv preprint arXiv: 1409.1556."},{"key":"10032_CR33","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Conference on Computer Vision and Pattern Recognition (CVPR). 2016; pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10032_CR34","doi-asserted-by":"crossref","unstructured":"Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Conference on Computer Vision and Pattern Recognition (CVPR). 2017; pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"key":"10032_CR35","doi-asserted-by":"crossref","unstructured":"Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. Conference on Computer Vision and Pattern Recognition (CVPR). 2015; pp. 1\u20139.","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"10032_CR36","doi-asserted-by":"crossref","unstructured":"Wehrmann J, Cerri R, Barros R. Hierarchical multi-label classification networks. International Conference on Machine Learning (ICCV). 2018; pp. 5075\u20135084.","DOI":"10.1145\/3019612.3019664"},{"key":"10032_CR37","doi-asserted-by":"crossref","unstructured":"Freeman I, Roese-Koerner L, Kummert A. Effnet: an efficient structure for convolutional neural networks. 2018; arXiv preprint arXiv: 1801.06434.","DOI":"10.1109\/ICIP.2018.8451339"},{"key":"10032_CR38","doi-asserted-by":"crossref","unstructured":"Zhang M-L, Zhou Z-H, Engineering D. A review on multi-label learning algorithms. IEEE transactions on knowledge. 2013;26(8):1819\u20131837.","DOI":"10.1109\/TKDE.2013.39"},{"key":"10032_CR39","doi-asserted-by":"crossref","unstructured":"Durand T, Mehrasa N, Mori G. Learning a deep convnet for multi-label classification with partial labels. Conference on Computer Vision and Pattern Recognition (CVPR). 2019; pp. 647\u2013657.","DOI":"10.1109\/CVPR.2019.00074"},{"key":"10032_CR40","unstructured":"Krizhevsky, A, Sutskever, I, Hinton, G. ImageNet classification with deep convolutional neural networks. Proceedings of 26th Conference on Neural Information Processing Systems (NIPS). 2012; pp. 1097\u20131105."},{"key":"10032_CR41","doi-asserted-by":"crossref","unstructured":"Qin Z, Zhang P, Wu F, Li X. FcaNet: frequency channel attention networks. 2020; arXiv preprint arXiv: 2012.11879.","DOI":"10.1109\/ICCV48922.2021.00082"},{"key":"10032_CR42","doi-asserted-by":"crossref","unstructured":"Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Conference on Computer Vision and Pattern Recognition (CVPR). 2018; pp. 7132\u20137141.","DOI":"10.1109\/CVPR.2018.00745"},{"key":"10032_CR43","doi-asserted-by":"crossref","unstructured":"Li X, Wang W, Hu X, Yang J. Selective kernel networks. Conference on Computer Vision and Pattern Recognition (CVPR). 2019. pp. 510\u2013519.","DOI":"10.1109\/CVPR.2019.00060"},{"key":"10032_CR44","doi-asserted-by":"crossref","unstructured":"Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. ECA-Net: efficient channel attention for deep convolutional neural networks. 2020. arXiv preprint arXiv: 1910.03151.","DOI":"10.1109\/CVPR42600.2020.01155"},{"key":"10032_CR45","doi-asserted-by":"crossref","unstructured":"Woo S, Park J, Lee J-Y, Kweon IS. CBAM: Convolutional block attention module. IEEE International Conference on Computer Vision (ECCV). 2018. pp. 3\u201319.","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"10032_CR46","unstructured":"Chen Y, Kalantidis Y, Li J, Yan S, Feng J. A2-Nets: Double attention networks. 2018. arXiv preprint arXiv: 1810.11579."},{"key":"10032_CR47","doi-asserted-by":"crossref","unstructured":"Guha Roy A, Navab N, Wachinger C. Concurrent spatial and channel squeeze & excitation in fully convolutional networks. In International conference on medical image computing and computer-assisted intervention. 2018; pp. 421\u2013429.","DOI":"10.1007\/978-3-030-00928-1_48"},{"key":"10032_CR48","doi-asserted-by":"crossref","unstructured":"Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Conference on Medical image computing and computer-assisted intervention. 2015; pp. 234\u2013241.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"10032_CR49","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.neunet.2017.12.012","volume":"107","author":"S Elfwing","year":"2018","unstructured":"Elfwing S, Uchibe E, Doya K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 2018;107:3\u201311.","journal-title":"Neural Netw"},{"issue":"6789","key":"10032_CR50","doi-asserted-by":"publisher","first-page":"947","DOI":"10.1038\/35016072","volume":"405","author":"RH Hahnloser","year":"2000","unstructured":"Hahnloser RH, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature. 2000;405(6789):947\u201351.","journal-title":"Nature"},{"key":"10032_CR51","unstructured":"Islam MA, Jia S, Bruce ND. How much position information do convolutional neural networks encode?. 2020. arXiv preprint arXiv: 2001.08248."},{"key":"10032_CR52","unstructured":"NIH. ChestX-ray14 dataset. 2017. https:\/\/nihcc.app.box.com\/v\/ChestXray-NIHCC."},{"key":"10032_CR53","unstructured":"Kaggle. Catheter and Line Position Challenge. 2021. https:\/\/www.kaggle.com\/c\/ranzcr-clip-catheter-line-classification."},{"issue":"3","key":"10032_CR54","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vision. 2015;115(3):211\u201352.","journal-title":"Int J Comput Vision"},{"key":"10032_CR55","unstructured":"Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts. 2016. arXiv preprint arXiv: 1608.03983."},{"key":"10032_CR56","unstructured":"Loshchilov I, Hutter F. Decoupled weight decay regularization. 2017. arXiv preprint arXiv: 1711.05101."},{"issue":"1","key":"10032_CR57","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1471-2105-12-77","volume":"12","author":"X Robin","year":"2011","unstructured":"Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):1\u20138.","journal-title":"BMC Bioinformatics"}],"container-title":["Cognitive Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12559-022-10032-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12559-022-10032-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12559-022-10032-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T13:26:13Z","timestamp":1658496373000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12559-022-10032-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6,3]]},"references-count":57,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2022,7]]}},"alternative-id":["10032"],"URL":"https:\/\/doi.org\/10.1007\/s12559-022-10032-4","relation":{},"ISSN":["1866-9956","1866-9964"],"issn-type":[{"value":"1866-9956","type":"print"},{"value":"1866-9964","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,6,3]]},"assertion":[{"value":"26 October 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 May 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 June 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical Approval"}},{"value":"The authors declare no competing interests.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest"}}]}}