{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,6]],"date-time":"2024-11-06T05:12:38Z","timestamp":1730869958559,"version":"3.28.0"},"reference-count":152,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,12,6]],"date-time":"2023-12-06T00:00:00Z","timestamp":1701820800000},"content-version":"vor","delay-in-days":5,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100008349","name":"Universit\u00e4t Duisburg-Essen","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100008349","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Electron Markets"],"published-print":{"date-parts":[[2023,12]]},"abstract":"Abstract<\/jats:title>Recent developments in the field of artificial intelligence (AI) have enabled new paradigms of machine processing, shifting from data-driven, discriminative AI tasks toward sophisticated, creative tasks through generative AI. Leveraging deep generative models, generative AI is capable of producing novel and realistic content across a broad spectrum (e.g., texts, images, or programming code) for various domains based on basic user prompts. In this article, we offer a comprehensive overview of the fundamentals of generative AI with its underpinning concepts and prospects. We provide a conceptual introduction to relevant terms and techniques, outline the inherent properties that constitute generative AI, and elaborate on the potentials and challenges. We underline the necessity for researchers and practitioners to comprehend the distinctive characteristics of generative artificial intelligence in order to harness its potential while mitigating its risks and to contribute to a principal understanding.<\/jats:p>","DOI":"10.1007\/s12525-023-00680-1","type":"journal-article","created":{"date-parts":[[2023,12,6]],"date-time":"2023-12-06T02:01:36Z","timestamp":1701828096000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":40,"title":["Generative artificial intelligence"],"prefix":"10.1007","volume":"33","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9185-0243","authenticated-orcid":false,"given":"Leonardo","family":"Banh","sequence":"first","affiliation":[]},{"given":"Gero","family":"Strobel","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,12,6]]},"reference":[{"issue":"1","key":"680_CR1","doi-asserted-by":"publisher","first-page":"420","DOI":"10.17705\/1CAIS.05017","volume":"50","author":"PJ \u00c5gerfalk","year":"2022","unstructured":"\u00c5gerfalk, P. J., Conboy, K., Crowston, K., Eriksson Lundstr\u00f6m, J. S. Z., Jarvenpaa, S., Ram, S., & Mikalef, P. (2022). Artificial intelligence in information systems: State of the art and research roadmap. Communications of the Association for Information Systems, 50(1), 420\u2013438. https:\/\/doi.org\/10.17705\/1CAIS.05017","journal-title":"Communications of the Association for Information Systems"},{"issue":"1","key":"680_CR2","doi-asserted-by":"publisher","first-page":"100004","DOI":"10.1016\/j.jjimei.2020.100004","volume":"1","author":"A Aggarwal","year":"2021","unstructured":"Aggarwal, A., Mittal, M., & Battineni, G. (2021). Generative adversarial network: An overview of theory and applications. International Journal of Information Management Data Insights, 1(1), 100004. https:\/\/doi.org\/10.1016\/j.jjimei.2020.100004","journal-title":"International Journal of Information Management Data Insights"},{"key":"680_CR3","doi-asserted-by":"publisher","unstructured":"Agostinelli,\u00a0A., Denk,\u00a0T.\u00a0I., Borsos,\u00a0Z., Engel,\u00a0J., Verzetti,\u00a0M., Caillon,\u00a0A., Huang,\u00a0Q., Jansen,\u00a0A., Roberts,\u00a0A., Tagliasacchi,\u00a0M., Sharifi,\u00a0M., Zeghidour,\u00a0N., & Frank,\u00a0C. (2023). MusicLM: Generating Music From Text. https:\/\/doi.org\/10.48550\/arXiv.2301.11325","DOI":"10.48550\/arXiv.2301.11325"},{"key":"680_CR4","doi-asserted-by":"publisher","unstructured":"Ali,\u00a0H., Murad,\u00a0S., & Shah,\u00a0Z. (2023). Spot the fake lungs: Generating synthetic medical images using neural diffusion models. In L. Longo & R. O\u2019Reilly (Eds.), Communications in Computer and Information Science. Artificial Intelligence and Cognitive Science (Vol. 1662, pp.\u00a032\u201339). Springer Nature Switzerland. https:\/\/doi.org\/10.1007\/978-3-031-26438-2_3","DOI":"10.1007\/978-3-031-26438-2_3"},{"issue":"1","key":"680_CR5","doi-asserted-by":"publisher","first-page":"589","DOI":"10.1007\/s10462-021-10039-7","volume":"55","author":"N Anantrasirichai","year":"2022","unstructured":"Anantrasirichai, N., & Bull, D. (2022). Artificial intelligence in the creative industries: A review. Artificial Intelligence Review, 55(1), 589\u2013656. https:\/\/doi.org\/10.1007\/s10462-021-10039-7","journal-title":"Artificial Intelligence Review"},{"issue":"6","key":"680_CR6","doi-asserted-by":"publisher","first-page":"54","DOI":"10.1145\/3209581","volume":"61","author":"R Baeza-Yates","year":"2018","unstructured":"Baeza-Yates, R. (2018). Bias on the web. Communications of the ACM, 61(6), 54\u201361. https:\/\/doi.org\/10.1145\/3209581","journal-title":"Communications of the ACM"},{"issue":"1","key":"680_CR7","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1016\/j.ausmj.2020.04.002","volume":"30","author":"M Bakpayev","year":"2022","unstructured":"Bakpayev, M., Baek, T. H., van Esch, P., & Yoon, S. (2022). Programmatic creative: AI can think but it cannot feel. Australasian Marketing Journal, 30(1), 90\u201395. https:\/\/doi.org\/10.1016\/j.ausmj.2020.04.002","journal-title":"Australasian Marketing Journal"},{"key":"680_CR8","unstructured":"BBC. (2023). Fake Trump arrest photos: How to spot an AI-generated image. https:\/\/www.bbc.com\/news\/world-us-canada-65069316"},{"key":"680_CR9","doi-asserted-by":"publisher","unstructured":"Berente, N., Gu, B., Recker, J., & Santhanam, R. (2021). Special issue editor\u2019s comments: Managing artificial intelligence. MIS Quarterly, 45(3), 1433\u20131450. https:\/\/doi.org\/10.25300\/MISQ\/2021\/16274","DOI":"10.25300\/MISQ\/2021\/16274"},{"issue":"5","key":"680_CR10","doi-asserted-by":"publisher","first-page":"e230582","DOI":"10.1148\/radiol.230582","volume":"307","author":"R Bhayana","year":"2023","unstructured":"Bhayana, R., Krishna, S., & Bleakney, R. R. (2023). Performance of ChatGPT on a radiology board-style examination: Insights into current strengths and limitations. Radiology, 307(5), e230582. https:\/\/doi.org\/10.1148\/radiol.230582","journal-title":"Radiology"},{"key":"680_CR11","doi-asserted-by":"publisher","unstructured":"Borsos, Z., Marinier, R., Vincent, D., Kharitonov, E., Pietquin, O., Sharifi, M., Teboul, O., Grangier, D., Tagliasacchi, M., & Zeghidour, N. (2022). AudioLM: a Language Modeling Approach to Audio Generation. https:\/\/doi.org\/10.48550\/arXiv.2209.03143","DOI":"10.48550\/arXiv.2209.03143"},{"key":"680_CR12","doi-asserted-by":"publisher","unstructured":"Brand, J., Israeli, A., & Ngwe, D. (2023). Using GPT for market research. Harvard Business School Marketing Unit Working Paper. Advance online publication. https:\/\/doi.org\/10.2139\/ssrn.4395751","DOI":"10.2139\/ssrn.4395751"},{"key":"680_CR13","doi-asserted-by":"publisher","unstructured":"Brasse, J., Broder, H. R., F\u00f6rster, M., Klier, M., & Sigler, I. (2023). Explainable artificial intelligence in information systems: A review of the status quo and future research directions. Electronic Markets, 33, 26. https:\/\/doi.org\/10.1007\/s12525-023-00644-5","DOI":"10.1007\/s12525-023-00644-5"},{"key":"680_CR14","first-page":"1877","volume-title":"Advances in neural information processing systems 33","author":"T Brown","year":"2020","unstructured":"Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., & Amodei, D. (2020). Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in neural information processing systems 33 (pp. 1877\u20131901). Curran Associates Inc."},{"key":"680_CR15","unstructured":"Brynjolfsson,\u00a0E., & McAfee,\u00a0A. (2016). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company."},{"key":"680_CR16","doi-asserted-by":"publisher","DOI":"10.3386\/w31161","author":"E Brynjolfsson","year":"2023","unstructured":"Brynjolfsson, E., Li, D., & Raymond, L. (2023). Generative AI at Work. Cambridge MA. https:\/\/doi.org\/10.3386\/w31161","journal-title":"Cambridge MA."},{"issue":"6370","key":"680_CR17","doi-asserted-by":"publisher","first-page":"1530","DOI":"10.1126\/science.aap8062","volume":"358","author":"E Brynjolfsson","year":"2017","unstructured":"Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530\u20131534. https:\/\/doi.org\/10.1126\/science.aap8062","journal-title":"Science"},{"key":"680_CR18","doi-asserted-by":"publisher","unstructured":"Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T., & Zhang, Y. (2023). Sparks of artificial general intelligence: Early experiments with GPT-4. https:\/\/doi.org\/10.48550\/arXiv.2303.12712","DOI":"10.48550\/arXiv.2303.12712"},{"issue":"7","key":"680_CR19","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1108\/EJIM-02-2023-0156","volume":"26","author":"B Burger","year":"2023","unstructured":"Burger, B., Kanbach, D. K., Kraus, S., Breier, M., & Corvello, V. (2023). On the use of AI-based tools like ChatGPT to support management research. European Journal of Innovation Management, 26(7), 233\u2013241. https:\/\/doi.org\/10.1108\/EJIM-02-2023-0156","journal-title":"European Journal of Innovation Management"},{"key":"680_CR20","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.jbusres.2021.01.016","volume":"127","author":"T Burstr\u00f6m","year":"2021","unstructured":"Burstr\u00f6m, T., Parida, V., Lahti, T., & Wincent, J. (2021). AI-enabled business-model innovation and transformation in industrial ecosystems: A framework, model and outline for further research. Journal of Business Research, 127, 85\u201395. https:\/\/doi.org\/10.1016\/j.jbusres.2021.01.016","journal-title":"Journal of Business Research"},{"issue":"7623","key":"680_CR21","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1038\/538020a","volume":"538","author":"D Castelvecchi","year":"2016","unstructured":"Castelvecchi, D. (2016). Can we open the black box of AI? Nature, 538(7623), 20\u201323. https:\/\/doi.org\/10.1038\/538020a","journal-title":"Nature"},{"key":"680_CR22","doi-asserted-by":"publisher","unstructured":"Choi, H., Chang, W., & Choi, J. (2022). Can we find neurons that cause unrealistic images in deep generative networks? In R. Dechter & L. de Raedt (Eds.), Proceedings of the thirty-first international joint conference on artificial intelligence (pp. 2888\u20132894). International Joint Conferences on Artificial Intelligence Organization. https:\/\/doi.org\/10.24963\/ijcai.2022\/400","DOI":"10.24963\/ijcai.2022\/400"},{"key":"680_CR23","unstructured":"Christiano,\u00a0P.\u00a0F., Leike,\u00a0J., Brown,\u00a0T., Martic,\u00a0M., Legg,\u00a0S., & Amodei,\u00a0D. (2017). Deep reinforcement learning from human preferences. In I. Guyon, U. von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems 30 (Vol. 30). Curran Associates, Inc."},{"issue":"3","key":"680_CR24","doi-asserted-by":"publisher","first-page":"444","DOI":"10.1007\/s10956-023-10039-y","volume":"32","author":"G Cooper","year":"2023","unstructured":"Cooper, G. (2023). Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. Journal of Science Education and Technology, 32(3), 444\u2013452. https:\/\/doi.org\/10.1007\/s10956-023-10039-y","journal-title":"Journal of Science Education and Technology"},{"key":"680_CR25","doi-asserted-by":"publisher","unstructured":"Dang, H., Mecke, L., Lehmann, F., Goller, S., & Buschek, D. (2022). How to prompt? Opportunities and challenges of zero- and few-shot learning for human-ai interaction in creative applications of generative models. In Generative AI and HCI Workshop: CHI 2022, New Orleans, LA. https:\/\/doi.org\/10.48550\/arXiv.2209.01390","DOI":"10.48550\/arXiv.2209.01390"},{"key":"680_CR26","doi-asserted-by":"publisher","unstructured":"Danks, D., & London, A. J. (2017). Algorithmic bias in autonomous systems. In F. Bacchus & C. Sierra (Eds.), Proceedings of the twenty-sixth international joint conference on artificial intelligence (pp. 4691\u20134697). International Joint Conferences on Artificial Intelligence Organization. https:\/\/doi.org\/10.24963\/ijcai.2017\/654","DOI":"10.24963\/ijcai.2017\/654"},{"key":"680_CR27","doi-asserted-by":"publisher","first-page":"101994","DOI":"10.1016\/j.ijinfomgt.2019.08.002","volume":"57","author":"YK Dwivedi","year":"2021","unstructured":"Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., & Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https:\/\/doi.org\/10.1016\/j.ijinfomgt.2019.08.002","journal-title":"International Journal of Information Management"},{"key":"680_CR28","doi-asserted-by":"publisher","first-page":"102642","DOI":"10.1016\/j.ijinfomgt.2023.102642","volume":"71","author":"YK Dwivedi","year":"2023","unstructured":"Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., & Wright, R. (2023). \u201cSo what if ChatGPT wrote it?\u201d Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https:\/\/doi.org\/10.1016\/j.ijinfomgt.2023.102642","journal-title":"International Journal of Information Management"},{"key":"680_CR29","doi-asserted-by":"publisher","unstructured":"Dziri,\u00a0N., Milton,\u00a0S., Yu,\u00a0M., Zaiane,\u00a0O., & Reddy,\u00a0S. (2022). On the origin of hallucinations in conversational models: Is it the datasets or the models? In M. Carpuat, M.-C. de Marneffe, & I. V. Meza Ruiz (Eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp.\u00a05271\u20135285). Association for Computational Linguistics. https:\/\/doi.org\/10.18653\/v1\/2022.naacl-main.387","DOI":"10.18653\/v1\/2022.naacl-main.387"},{"issue":"1","key":"680_CR30","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1002\/hrm.22147","volume":"62","author":"K Einola","year":"2023","unstructured":"Einola, K., & Khoreva, V. (2023). Best friend or broken tool? Exploring the co-existence of humans and artificial intelligence in the workplace ecosystem. Human Resource Management, 62(1), 117\u2013135. https:\/\/doi.org\/10.1002\/hrm.22147","journal-title":"Human Resource Management"},{"issue":"5","key":"680_CR31","doi-asserted-by":"publisher","first-page":"4609","DOI":"10.1007\/s11063-022-10777-x","volume":"54","author":"M Elasri","year":"2022","unstructured":"Elasri, M., Elharrouss, O., Al-Maadeed, S., & Tairi, H. (2022). Image generation: A review. Neural Processing Letters, 54(5), 4609\u20134646. https:\/\/doi.org\/10.1007\/s11063-022-10777-x","journal-title":"Neural Processing Letters"},{"key":"680_CR32","unstructured":"Elicit. (2022). Frequently asked questions: What is elicit? https:\/\/elicit.org\/faq#what-is-elicit"},{"key":"680_CR33","doi-asserted-by":"publisher","unstructured":"Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2023). GPTs are GPTs: An early look at the labor market impact potential of large language models. arXiv. https:\/\/doi.org\/10.48550\/arXiv.2303.10130","DOI":"10.48550\/arXiv.2303.10130"},{"key":"680_CR34","doi-asserted-by":"publisher","unstructured":"Esser, P., Chiu, J., Atighehchian, P., Granskog, J., & Germanidis, A. (2023). Structure and content-guided video synthesis with diffusion models. https:\/\/doi.org\/10.48550\/arXiv.2302.03011","DOI":"10.48550\/arXiv.2302.03011"},{"key":"680_CR35","doi-asserted-by":"publisher","unstructured":"Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D., & Zhou, M. (2020). CodeBERT: A pre-trained model for programming and natural languages. In T. Cohn, Y. He, & Y. Liu (Eds.), Findings of the association for computational linguistics: EMNLP 2020 (pp. 1536\u20131547). Association for Computational Linguistics. https:\/\/doi.org\/10.18653\/v1%2F2020.findings-emnlp.139","DOI":"10.18653\/v1%2F2020.findings-emnlp.139"},{"key":"680_CR36","doi-asserted-by":"publisher","unstructured":"Ferrara, E. (2023). Should ChatGPT be biased? Challenges and risks of bias in large language models. arXiv. https:\/\/doi.org\/10.48550\/arXiv.2304.03738","DOI":"10.48550\/arXiv.2304.03738"},{"issue":"1","key":"680_CR37","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1287\/msom.2015.0561","volume":"18","author":"KJ Ferreira","year":"2016","unstructured":"Ferreira, K. J., Lee, B. H. A., & Simchi-Levi, D. (2016). Analytics for an online retailer: Demand forecasting and price optimization. Manufacturing & Service Operations Management, 18(1), 69\u201388. https:\/\/doi.org\/10.1287\/msom.2015.0561","journal-title":"Manufacturing & Service Operations Management"},{"issue":"3","key":"680_CR38","doi-asserted-by":"publisher","first-page":"1527","DOI":"10.25300\/MISQ\/2021\/16553","volume":"45","author":"A F\u00fcgener","year":"2021","unstructured":"F\u00fcgener, A., Grahl, J., Gupta, A., & Ketter, W. (2021). Will humans-in-the-loop become borgs? Merits and pitfalls of working with AI. MIS Quarterly, 45(3), 1527\u20131556. https:\/\/doi.org\/10.25300\/MISQ\/2021\/16553","journal-title":"MIS Quarterly"},{"key":"680_CR39","unstructured":"Gao,\u00a0J., Shen,\u00a0T., Wang,\u00a0Z, Chen,\u00a0W., Yin,\u00a0K., Li,\u00a0D, Litany,\u00a0O., Gojcic,\u00a0Z., & Fidler,\u00a0S. (2022). GET3D: A generative model of high quality 3D textured shapes learned from images. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems 35. Curran Associates, Inc."},{"key":"680_CR40","doi-asserted-by":"publisher","first-page":"e45312","DOI":"10.2196\/45312","volume":"9","author":"A Gilson","year":"2023","unstructured":"Gilson, A., Safranek, C. W., Huang, T., Socrates, V., Chi, L., Taylor, R. A., & Chartash, D. (2023). How does ChatGPT perform on the United States Medical Licensing Examination? The implications of large language models for medical education and knowledge assessment. JMIR Medical Education, 9, e45312. https:\/\/doi.org\/10.2196\/45312","journal-title":"JMIR Medical Education"},{"key":"680_CR41","doi-asserted-by":"publisher","first-page":"100285","DOI":"10.1016\/j.cosrev.2020.100285","volume":"38","author":"H Gm","year":"2020","unstructured":"Gm, H., Gourisaria, M. K., Pandey, M., & Rautaray, S. (2020). A comprehensive survey and analysis of generative models in machine learning. Computer Science Review, 38, 100285. https:\/\/doi.org\/10.1016\/j.cosrev.2020.100285","journal-title":"Computer Science Review"},{"key":"680_CR42","volume-title":"Deep learning","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press."},{"issue":"11","key":"680_CR43","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1145\/3422622","volume":"63","author":"I Goodfellow","year":"2020","unstructured":"Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139\u2013144. https:\/\/doi.org\/10.1145\/3422622","journal-title":"Communications of the ACM"},{"key":"680_CR44","unstructured":"Griffith,\u00a0S., Subramanian,\u00a0K., Scholz,\u00a0J., Isbell,\u00a0C.\u00a0L., & Thomaz,\u00a0A.\u00a0L. (2013). Policy shaping: Integrating Human feedback with reinforcement learning. In C. J. C. Burges, L. Bottou, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 26 (Vol. 26). Curran Associates, Inc."},{"issue":"4","key":"680_CR45","doi-asserted-by":"publisher","first-page":"3313","DOI":"10.1109\/TKDE.2021.3130191","volume":"35","author":"J Gui","year":"2023","unstructured":"Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2023). A review on generative adversarial networks: Algorithms, theory, and applications. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3313\u20133332. https:\/\/doi.org\/10.1109\/TKDE.2021.3130191","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"680_CR46","unstructured":"Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A., Fu, S., Tufano, M., Deng, S. K., Clement, C., Drain, D., Sundaresan, N., Yin, J., Jiang, D., & Zhou, M. (2021). GraphCodeBERT: Pre-training code representations with data flow. 9th International Conference on Learning Representations 2021 (ICLR), Virtual."},{"key":"680_CR47","unstructured":"Haase,\u00a0J., Djurica,\u00a0D., & Mendling,\u00a0J. (2023). The art of inspiring creativity: Exploring the unique impact of AI-generated images. AMCIS 2023 Proceedings."},{"key":"680_CR48","doi-asserted-by":"publisher","unstructured":"Hacker, P., Engel, A., & Mauer, M. (2023). Regulating ChatGPT and other large generative AI models. 2023 ACM Conference on Fairness, Accountability, and Transparency (pp. 1112\u20131123). ACM. https:\/\/doi.org\/10.1145\/3593013.3594067","DOI":"10.1145\/3593013.3594067"},{"key":"680_CR49","doi-asserted-by":"publisher","unstructured":"Hamm, P., Klesel, M., Coberger, P., & Wittmann, H. F. (2023). Explanation matters: An experimental study on explainable AI. Electronic Markets, 33, 17. https:\/\/doi.org\/10.1007\/s12525-023-00640-9","DOI":"10.1007\/s12525-023-00640-9"},{"key":"680_CR50","unstructured":"Hamon,\u00a0R., Junklewitz,\u00a0H., & Sanchez,\u00a0I. (2020). Robustness and explainability of artificial intelligence: From technical to policy solutions. EUR: Vol. 30040. Publications Office of the European Union."},{"key":"680_CR51","volume-title":"Expert systems: Artificial intelligence in business","author":"P Harmon","year":"1985","unstructured":"Harmon, P. (1985). Expert systems: Artificial intelligence in business. Wiley & Sons."},{"key":"680_CR52","doi-asserted-by":"publisher","unstructured":"Hartmann, J., Schwenzow, J., & Witte, M. (2023). The political ideology of conversational AI: Converging evidence on ChatGPT's pro-environmental, left-libertarian orientation. https:\/\/doi.org\/10.48550\/arXiv.2301.01768","DOI":"10.48550\/arXiv.2301.01768"},{"key":"680_CR53","first-page":"6840","volume-title":"Advances in Neural Information Processing Systems 33","author":"J Ho","year":"2020","unstructured":"Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in Neural Information Processing Systems 33 (pp. 6840\u20136851). Curran Associates Inc."},{"key":"680_CR54","doi-asserted-by":"publisher","unstructured":"Hooker, S. (2021). Moving beyond \u201calgorithmic bias is a data problem\u201d. Patterns (New York, N.Y.), 2(4), 100241. https:\/\/doi.org\/10.1016\/j.patter.2021.100241","DOI":"10.1016\/j.patter.2021.100241"},{"key":"680_CR55","doi-asserted-by":"publisher","DOI":"10.1007\/s12599-023-00817-8","author":"D Horneber","year":"2023","unstructured":"Horneber, D., & Laumer, S. (2023). Algorithmic accountability. Business & Information Systems Engineering. Advance online publication. https:\/\/doi.org\/10.1007\/s12599-023-00817-8","journal-title":"Business & Information Systems Engineering. Advance online publication."},{"key":"680_CR56","doi-asserted-by":"publisher","unstructured":"Houde, S., Liao, V., Martino, J., Muller, M., Piorkowski, D., Richards, J., Weisz, J., & Zhang, Y. (2020). Business (mis)Use Cases of Generative AI. In W. Geyer, Y. Khazaeni, & M. Shmueli-Scheuer (Eds.), Joint Proceedings of the Workshops on Human-AI Co-Creation with Generative Models and User-Aware Conversational Agents co-located with 25th International Conference on Intelligent User Interfaces (IUI 2020). CEUR. https:\/\/doi.org\/10.48550\/arXiv.2003.07679","DOI":"10.48550\/arXiv.2003.07679"},{"key":"680_CR57","unstructured":"Hu, K. (2023, February 2). ChatGPT sets record for fastest-growing user base - Analyst note. Reuters. https:\/\/www.reuters.com\/technology\/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01\/"},{"key":"680_CR58","unstructured":"Huang,\u00a0S., & Grady,\u00a0P. (2022). Generative AI: A Creative New World. Sequoia. https:\/\/www.sequoiacap.com\/article\/generative-ai-a-creative-new-world\/"},{"key":"680_CR59","unstructured":"Hughes,\u00a0A. (2023). Why AI-generated hands are the stuff of nightmares, explained by a scientist. BBC Science Focus. https:\/\/www.sciencefocus.com\/future-technology\/why-ai-generated-hands-are-the-stuff-of-nightmares-explained-by-a-scientist\/"},{"key":"680_CR60","doi-asserted-by":"publisher","unstructured":"Jakesch,\u00a0M., Bhat,\u00a0A., Buschek,\u00a0D., Zalmanson,\u00a0L., & Naaman,\u00a0M. (2023a). Co-writing with opinionated language models affects users\u2019 views. In A. Schmidt, K. V\u00e4\u00e4n\u00e4nen, T. Goyal, P. O. Kristensson, A. Peters, S. Mueller, J. R. Williamson, & M. L. Wilson (Eds.), Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (pp.\u00a01\u201315). ACM. https:\/\/doi.org\/10.1145\/3544548.3581196.","DOI":"10.1145\/3544548.3581196."},{"issue":"11","key":"680_CR61","doi-asserted-by":"publisher","first-page":"e2208839120","DOI":"10.1073\/pnas.2208839120","volume":"120","author":"M Jakesch","year":"2023","unstructured":"Jakesch, M., Hancock, J. T., & Naaman, M. (2023b). Human heuristics for AI-generated language are flawed. Proceedings of the National Academy of Sciences of the United States of America, 120(11), e2208839120. https:\/\/doi.org\/10.1073\/pnas.2208839120","journal-title":"Proceedings of the National Academy of Sciences of the United States of America"},{"issue":"3","key":"680_CR62","doi-asserted-by":"publisher","first-page":"685","DOI":"10.1007\/s12525-021-00475-2","volume":"31","author":"C Janiesch","year":"2021","unstructured":"Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685\u2013695. https:\/\/doi.org\/10.1007\/s12525-021-00475-2","journal-title":"Electronic Markets"},{"key":"680_CR63","unstructured":"Jasper. (2022). ChatGPT vs. Jasper: How it\u2019s different from Jasper chat. https:\/\/www.jasper.ai\/blog\/what-is-chatgpt"},{"key":"680_CR64","doi-asserted-by":"publisher","unstructured":"Jebara,\u00a0T. (2004). Generative versus discriminative learning. In T. Jebara (Ed.), Machine Learning (pp.\u00a017\u201360). Springer US. https:\/\/doi.org\/10.1007\/978-1-4419-9011-2_2","DOI":"10.1007\/978-1-4419-9011-2_2"},{"issue":"12","key":"680_CR65","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3571730","volume":"55","author":"Z Ji","year":"2023","unstructured":"Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Madotto, A., & Fung, P. (2023). Survey of hallucination in natural language generation. ACM Computing Surveys, 55(12), 1\u201338. https:\/\/doi.org\/10.1145\/3571730","journal-title":"ACM Computing Surveys"},{"key":"680_CR66","doi-asserted-by":"crossref","unstructured":"Jin, Y., Jang, E., Cui, J., Chung, J.\u2011W., Lee, Y., & Shin, S. (2023). DarkBERT: A language model for the dark side of the Internet. In\u00a061st Annual Meeting of the Association for Computational Linguistics (ACL\u201923), Toronto, Canada.","DOI":"10.18653\/v1\/2023.acl-long.415"},{"issue":"9","key":"680_CR67","doi-asserted-by":"publisher","first-page":"2267","DOI":"10.1002\/asi.23867","volume":"68","author":"DG Johnson","year":"2017","unstructured":"Johnson, D. G., & Verdicchio, M. (2017). AI Anxiety. Journal of the Association for Information Science and Technology, 68(9), 2267\u20132270. https:\/\/doi.org\/10.1002\/asi.23867","journal-title":"Journal of the Association for Information Science and Technology"},{"issue":"7873","key":"680_CR68","doi-asserted-by":"publisher","first-page":"583","DOI":"10.1038\/s41586-021-03819-2","volume":"596","author":"J Jumper","year":"2021","unstructured":"Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., \u017d\u00eddek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583\u2013589. https:\/\/doi.org\/10.1038\/s41586-021-03819-2","journal-title":"Nature"},{"key":"680_CR69","unstructured":"Kingma, D. P., & Welling, M (2014). Auto-encoding variational Bayes. International Conference on Learning Representations 2021 (ICLR), Banff, Canada."},{"key":"680_CR70","unstructured":"Kingma,\u00a0D.\u00a0P., Mohamed,\u00a0S., Jimenez Rezende,\u00a0D., & Welling,\u00a0M. (2014).Semi-supervised learning with deep generative models. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 27 (Vol. 27). Curran Associates, Inc."},{"key":"680_CR71","doi-asserted-by":"publisher","unstructured":"Kodali, N., Abernethy, J., Hays, J., & Kira, Z. (2017).On convergence and stability of GANs. arXiv. https:\/\/doi.org\/10.48550\/arXiv.1705.07215","DOI":"10.48550\/arXiv.1705.07215"},{"key":"680_CR72","unstructured":"Kowalczyk, P., R\u00f6der, M., & Thiesse, F. (2023). Nudging creativity in digital marketing with generative artificial intelligence: Opportunities and limitations. ECIS 2023 Research-in-Progress Papers, Article 22."},{"issue":"1","key":"680_CR73","doi-asserted-by":"publisher","first-page":"104","DOI":"10.1017\/XPS.2020.37","volume":"9","author":"S Kreps","year":"2022","unstructured":"Kreps, S., McCain, R. M., & Brundage, M. (2022). All the news that\u2019s fit to fabricate: AI-generated text as a tool of media misinformation. Journal of Experimental Political Science, 9(1), 104\u2013117. https:\/\/doi.org\/10.1017\/XPS.2020.37","journal-title":"Journal of Experimental Political Science"},{"issue":"4","key":"680_CR74","doi-asserted-by":"publisher","first-page":"2235","DOI":"10.1007\/s12525-022-00598-0","volume":"32","author":"N K\u00fchl","year":"2022","unstructured":"K\u00fchl, N., Schemmer, M., Goutier, M., & Satzger, G. (2022). Artificial intelligence and machine learning. Electronic Markets, 32(4), 2235\u20132244. https:\/\/doi.org\/10.1007\/s12525-022-00598-0","journal-title":"Electronic Markets"},{"issue":"7553","key":"680_CR75","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436\u2013444. https:\/\/doi.org\/10.1038\/nature14539","journal-title":"Nature"},{"issue":"3","key":"680_CR76","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1515\/icom-2020-0025","volume":"19","author":"F Lehmann","year":"2020","unstructured":"Lehmann, F., & Buschek, D. (2020). Examining autocompletion as a basic concept for interaction with generative AI. I-Com, 19(3), 251\u2013264. https:\/\/doi.org\/10.1515\/icom-2020-0025","journal-title":"I-Com"},{"key":"680_CR77","doi-asserted-by":"crossref","unstructured":"Leiker, D., Gyllen, A. R., Eldesouky, I., & Cukurova, M. (2023). Generative AI for learning: Investigating the potential of synthetic learning videos. In\u00a024th International Conference of Artificial Intelligence in Education (AIED 2023), Tokyo, Japan.","DOI":"10.1007\/978-3-031-36336-8_81"},{"issue":"7","key":"680_CR78","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1145\/3490443","volume":"65","author":"H Li","year":"2022","unstructured":"Li, H. (2022). Language models. Communications of the ACM, 65(7), 56\u201363. https:\/\/doi.org\/10.1145\/3490443","journal-title":"Communications of the ACM"},{"key":"680_CR79","doi-asserted-by":"publisher","unstructured":"Li, J., Li, M., Wang, X., & Thatcher, J. B. (2021). Strategic directions for AI: The role of CIOs and boards of directors. MIS Quarterly, 45(3), 1603\u20131644. https:\/\/doi.org\/10.25300\/MISQ\/2021\/16523","DOI":"10.25300\/MISQ\/2021\/16523"},{"key":"680_CR80","doi-asserted-by":"publisher","first-page":"116383","DOI":"10.1016\/j.eswa.2021.116383","volume":"192","author":"M Li","year":"2022","unstructured":"Li, M., Bao, X., Chang, L., & Gu, T. (2022). Modeling personalized representation for within-basket recommendation based on deep learning. Expert Systems with Applications, 192, 116383. https:\/\/doi.org\/10.1016\/j.eswa.2021.116383","journal-title":"Expert Systems with Applications"},{"issue":"4","key":"680_CR81","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1007\/s12599-021-00708-w","volume":"63","author":"S Lins","year":"2021","unstructured":"Lins, S., Pandl, K. D., Teigeler, H., Thiebes, S., Bayer, C., & Sunyaev, A. (2021). Artificial intelligence as a service. Business & Information Systems Engineering, 63(4), 441\u2013456. https:\/\/doi.org\/10.1007\/s12599-021-00708-w","journal-title":"Business & Information Systems Engineering"},{"key":"680_CR82","doi-asserted-by":"publisher","unstructured":"Liu, V., & Chilton, L. B. (2022). Design guidelines for prompt engineering text-to-image generative models. In S. Barbosa, C. Lampe, C. Appert, D. A. Shamma, S. Drucker, J. Williamson, & K. Yatani (Eds.), CHI Conference on Human Factors in Computing Systems (pp. 1\u201323). ACM. https:\/\/doi.org\/10.1145\/3491102.3501825","DOI":"10.1145\/3491102.3501825"},{"key":"680_CR83","doi-asserted-by":"publisher","unstructured":"Longoni, C., Fradkin, A., Cian, L., & Pennycook, G. (2022). News from generative artificial intelligence is believed less. In\u00a02022 ACM Conference on Fairness, Accountability, and Transparency (pp. 97\u2013106). ACM. https:\/\/doi.org\/10.1145\/3531146.3533077","DOI":"10.1145\/3531146.3533077"},{"issue":"4","key":"680_CR84","doi-asserted-by":"publisher","first-page":"1993","DOI":"10.1007\/s12525-022-00605-4","volume":"32","author":"R Lukyanenko","year":"2022","unstructured":"Lukyanenko, R., Maass, W., & Storey, V. C. (2022). Trust in artificial intelligence: From a Foundational Trust Framework to emerging research opportunities. Electronic Markets, 32(4), 1993\u20132020. https:\/\/doi.org\/10.1007\/s12525-022-00605-4","journal-title":"Electronic Markets"},{"issue":"5","key":"680_CR85","doi-asserted-by":"publisher","first-page":"570","DOI":"10.1002\/asi.24750","volume":"74","author":"BD Lund","year":"2023","unstructured":"Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a new academic reality: Artificial intelligence-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology, 74(5), 570\u2013581. https:\/\/doi.org\/10.1002\/asi.24750","journal-title":"Journal of the Association for Information Science and Technology"},{"key":"680_CR86","doi-asserted-by":"publisher","unstructured":"Lysyakov, M., & Viswanathan, S. (2022). Threatened by AI: Analyzing users\u2019 responses to the introduction of AI in a crowd-sourcing platform. Information Systems Research, 34(3). Advance online publication. https:\/\/doi.org\/10.1287\/isre.2022.1184","DOI":"10.1287\/isre.2022.1184"},{"key":"680_CR87","doi-asserted-by":"publisher","unstructured":"Mayahi,\u00a0S., & Vidrih,\u00a0M. (2022). The impact of generative AI on the future of visual content marketing. https:\/\/doi.org\/10.48550\/arXiv.2211.12660","DOI":"10.48550\/arXiv.2211.12660"},{"issue":"6","key":"680_CR88","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3457607","volume":"54","author":"N Mehrabi","year":"2022","unstructured":"Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2022). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1\u201335. https:\/\/doi.org\/10.1145\/3457607","journal-title":"ACM Computing Surveys"},{"issue":"4","key":"680_CR89","doi-asserted-by":"publisher","first-page":"2103","DOI":"10.1007\/s12525-022-00607-2","volume":"32","author":"C Meske","year":"2022","unstructured":"Meske, C., Abedin, B., Klier, M., & Rabhi, F. (2022). Explainable and responsible artificial intelligence. Electronic Markets, 32(4), 2103\u20132106. https:\/\/doi.org\/10.1007\/s12525-022-00607-2","journal-title":"Electronic Markets"},{"key":"680_CR90","unstructured":"Microsoft. (2023). Microsoft and OpenAI extend partnership. https:\/\/blogs.microsoft.com\/blog\/2023\/01\/23\/microsoftandopenaiextendpartnership\/"},{"key":"680_CR91","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.artint.2018.07.007","volume":"267","author":"T Miller","year":"2019","unstructured":"Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1\u201338. https:\/\/doi.org\/10.1016\/j.artint.2018.07.007","journal-title":"Artificial Intelligence"},{"issue":"1","key":"680_CR92","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1007\/s12525-021-00496-x","volume":"32","author":"M Mirbabaie","year":"2022","unstructured":"Mirbabaie, M., Br\u00fcnker, F., M\u00f6llmann Frick, N. R. J., & Stieglitz, S. (2022). The rise of artificial intelligence \u2013 Understanding the AI identity threat at the workplace. Electronic Markets, 32(1), 73\u201399. https:\/\/doi.org\/10.1007\/s12525-021-00496-x","journal-title":"Electronic Markets"},{"issue":"1","key":"680_CR93","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3425780","volume":"54","author":"Y Mirsky","year":"2022","unstructured":"Mirsky, Y., & Lee, W. (2022). The creation and detection of deepfakes. ACM Computing Surveys, 54(1), 1\u201341. https:\/\/doi.org\/10.1145\/3425780","journal-title":"ACM Computing Surveys"},{"issue":"2","key":"680_CR94","doi-asserted-by":"publisher","first-page":"44","DOI":"10.3390\/technologies11020044","volume":"11","author":"S Mondal","year":"2023","unstructured":"Mondal, S., Das, S., & Vrana, V. G. (2023). How to bell the cat? A theoretical review of generative artificial intelligence towards digital disruption in all walks of life. Technologies, 11(2), 44. https:\/\/doi.org\/10.3390\/technologies11020044","journal-title":"Technologies"},{"issue":"2","key":"680_CR95","doi-asserted-by":"publisher","first-page":"343","DOI":"10.1007\/s12525-020-00411-w","volume":"31","author":"S Moussawi","year":"2021","unstructured":"Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2021). How perceptions of intelligence and anthropomorphism affect adoption of personal intelligent agents. Electronic Markets, 31(2), 343\u2013364. https:\/\/doi.org\/10.1007\/s12525-020-00411-w","journal-title":"Electronic Markets"},{"issue":"3","key":"680_CR96","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1080\/10790268.2023.2198926","volume":"46","author":"C Murphy","year":"2023","unstructured":"Murphy, C., & Thomas, F. P. (2023). Generative AI in spinal cord injury research and care: Opportunities and challenges ahead. The Journal of Spinal Cord Medicine, 46(3), 341\u2013342. https:\/\/doi.org\/10.1080\/10790268.2023.2198926","journal-title":"The Journal of Spinal Cord Medicine"},{"key":"680_CR97","doi-asserted-by":"publisher","unstructured":"Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., & Chen, M. (2022). Point-E: A system for generating 3D point clouds from complex prompts. arXiv. https:\/\/doi.org\/10.48550\/arXiv.2212.08751","DOI":"10.48550\/arXiv.2212.08751"},{"issue":"3","key":"680_CR98","doi-asserted-by":"publisher","first-page":"e1356","DOI":"10.1002\/widm.1356","volume":"10","author":"E Ntoutsi","year":"2020","unstructured":"Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M.-E., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-Kurlanda, K., Wagner, C., Karimi, F., Fernandez, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., & Staab, S. (2020). Bias in data-driven artificial intelligence systems\u2014An introductory survey. WIREs Data Mining and Knowledge Discovery, 10(3), e1356. https:\/\/doi.org\/10.1002\/widm.1356","journal-title":"WIREs Data Mining and Knowledge Discovery"},{"key":"680_CR99","doi-asserted-by":"publisher","unstructured":"OpenAI. (2023). GPT-4 technical report. arXiv. https:\/\/doi.org\/10.48550\/arXiv.2303.08774","DOI":"10.48550\/arXiv.2303.08774"},{"key":"680_CR100","doi-asserted-by":"publisher","unstructured":"Oppenlaender, J. (2022). The creativity of text-to-image generation. Proceedings of the 25th International Academic Mindtrek Conference (pp. 192\u2013202). ACM. https:\/\/doi.org\/10.1145\/3569219.3569352","DOI":"10.1145\/3569219.3569352"},{"key":"680_CR101","doi-asserted-by":"publisher","unstructured":"Ouyang,\u00a0L., Wu,\u00a0J, Jiang,\u00a0X., Almeida,\u00a0D., Wainwright,\u00a0C.\u00a0L., Mishkin,\u00a0P., Zhang,\u00a0C, Agarwal,\u00a0S., Slama,\u00a0K., Ray,\u00a0A., Schulman,\u00a0J., Hilton,\u00a0J., Kelton,\u00a0F., Miller,\u00a0L., Simens,\u00a0M., Askell,\u00a0A., Welinder,\u00a0P., Christiano,\u00a0P., Leike,\u00a0J., & Lowe,\u00a0R. (2022). Training language models to follow instructions with human feedback. https:\/\/doi.org\/10.48550\/arXiv.2203.02155","DOI":"10.48550\/arXiv.2203.02155"},{"key":"680_CR102","doi-asserted-by":"publisher","first-page":"36322","DOI":"10.1109\/ACCESS.2019.2905015","volume":"7","author":"Z Pan","year":"2019","unstructured":"Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., & Zheng, Y. (2019). Recent progress on generative adversarial networks (GANs): A survey. IEEE Access, 7, 36322\u201336333. https:\/\/doi.org\/10.1109\/ACCESS.2019.2905015","journal-title":"IEEE Access"},{"key":"680_CR103","volume-title":"Introduction to artificial intelligence and expert systems","author":"DW Patterson","year":"1990","unstructured":"Patterson, D. W. (1990). Introduction to artificial intelligence and expert systems. Prentice Hall."},{"issue":"1","key":"680_CR104","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1177\/10776958221149577","volume":"78","author":"JV Pavlik","year":"2023","unstructured":"Pavlik, J. V. (2023). Collaborating with ChatGPT: Considering the implications of generative artificial intelligence for journalism and media education. Journalism & Mass Communication Educator, 78(1), 84\u201393. https:\/\/doi.org\/10.1177\/10776958221149577","journal-title":"Journalism & Mass Communication Educator"},{"key":"680_CR105","doi-asserted-by":"publisher","first-page":"107600","DOI":"10.1016\/j.chb.2022.107600","volume":"140","author":"I Pentina","year":"2023","unstructured":"Pentina, I., Hancock, T., & Xie, T. (2023). Exploring relationship development with social chatbots: A mixed-method study of replika. Computers in Human Behavior, 140, 107600. https:\/\/doi.org\/10.1016\/j.chb.2022.107600","journal-title":"Computers in Human Behavior"},{"key":"680_CR106","unstructured":"Perez,\u00a0F., & Ribeiro,\u00a0I. (2022). Ignore previous prompt: Attack techniques for language models. In D. Hendrycks, V. Krakovna, D. Song, J. Steinhardt, & N. Carlini (Chairs), Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS), Virtual."},{"issue":"6","key":"680_CR107","doi-asserted-by":"publisher","first-page":"1467","DOI":"10.1007\/s10796-021-10131-x","volume":"23","author":"F Piccialli","year":"2021","unstructured":"Piccialli, F., Di Cola, V. S., Giampaolo, F., & Cuomo, S. (2021). The role of artificial intelligence in fighting the COVID-19 pandemic. Information Systems Frontiers\u202f: A Journal of Research and Innovation, 23(6), 1467\u20131497. https:\/\/doi.org\/10.1007\/s10796-021-10131-x","journal-title":"Information Systems Frontiers : A Journal of Research and Innovation"},{"key":"680_CR108","unstructured":"Poole, B., Jain, A., Barron, J. T., & Mildenhall, B. (2023). DreamFusion: Text-to-3D using 2D diffusion. In\u00a0Eleventh International Conference on Learning Representations (ICLR 2023), Kigali, Rwanda."},{"issue":"4","key":"680_CR109","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1145\/1121112.1121113","volume":"12","author":"L Qiu","year":"2005","unstructured":"Qiu, L., & Benbasat, I. (2005). An investigation into the effects of text-to-speech voice and 3D avatars on the perception of presence and flow of live help in electronic commerce. ACM Transactions on Computer-Human Interaction, 12(4), 329\u2013355. https:\/\/doi.org\/10.1145\/1121112.1121113","journal-title":"ACM Transactions on Computer-Human Interaction"},{"key":"680_CR110","doi-asserted-by":"publisher","unstructured":"Raj, M., Berg, J., & Seamans, R. (2023). Art-ificial intelligence: The effect of AI disclosure on evaluations of creative content. arXiv. https:\/\/doi.org\/10.48550\/arXiv.2303.06217","DOI":"10.48550\/arXiv.2303.06217"},{"key":"680_CR111","doi-asserted-by":"publisher","unstructured":"Ray, S. (2019). A quick review of machine learning algorithms. In\u00a02019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) (pp. 35\u201339). IEEE. https:\/\/doi.org\/10.1109\/COMITCon.2019.8862451","DOI":"10.1109\/COMITCon.2019.8862451"},{"issue":"4","key":"680_CR112","doi-asserted-by":"publisher","first-page":"2021","DOI":"10.1007\/s12525-022-00594-4","volume":"32","author":"R Riedl","year":"2022","unstructured":"Riedl, R. (2022). Is trust in artificial intelligence systems related to user personality? Review of empirical evidence and future research directions. Electronic Markets, 32(4), 2021\u20132051. https:\/\/doi.org\/10.1007\/s12525-022-00594-4","journal-title":"Electronic Markets"},{"key":"680_CR113","unstructured":"Rix,\u00a0J., & Hess,\u00a0T. (2023). From \u201chandmade\u201d to \u201cAI-made\u201d: Mitigating consumers\u2019 aversion towards AI-generated textual products. AMCIS 2023 Proceedings."},{"key":"680_CR114","doi-asserted-by":"publisher","unstructured":"Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In\u00a02022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 10674\u201310685). IEEE. https:\/\/doi.org\/10.1109\/CVPR52688.2022.01042","DOI":"10.1109\/CVPR52688.2022.01042"},{"issue":"2","key":"680_CR115","doi-asserted-by":"publisher","first-page":"e202100008","DOI":"10.1002\/gamm.202100008","volume":"44","author":"L Ruthotto","year":"2021","unstructured":"Ruthotto, L., & Haber, E. (2021). An introduction to deep generative modeling. GAMM-Mitteilungen, 44(2), e202100008. https:\/\/doi.org\/10.1002\/gamm.202100008","journal-title":"GAMM-Mitteilungen"},{"issue":"1","key":"680_CR116","doi-asserted-by":"publisher","first-page":"271","DOI":"10.1080\/07421222.2023.2172772","volume":"40","author":"S Samtani","year":"2023","unstructured":"Samtani, S., Zhu, H., Padmanabhan, B., Chai, Y., Chen, H., & Nunamaker, J. F. (2023). Deep learning for information systems research. Journal of Management Information Systems, 40(1), 271\u2013301. https:\/\/doi.org\/10.1080\/07421222.2023.2172772","journal-title":"Journal of Management Information Systems"},{"issue":"1","key":"680_CR117","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1007\/s12599-022-00780-w","volume":"65","author":"J Schneider","year":"2023","unstructured":"Schneider, J., Seidel, S., Basalla, M., & vom Brocke, J. (2023). Reuse, reduce, support: Design Principles for green data mining. Business & Information Systems Engineering, 65(1), 65\u201383. https:\/\/doi.org\/10.1007\/s12599-022-00780-w","journal-title":"Business & Information Systems Engineering"},{"key":"680_CR118","doi-asserted-by":"publisher","unstructured":"Schoormann, T., Strobel, G., M\u00f6ller, F., Petrik, D., & Zschech, P. (2023). Artificial intelligence for sustainability - A systematic review of information systems literature. Communications of the Association for Information Systems, 52(1), 199\u2013237.\u00a0https:\/\/doi.org\/10.17705\/1CAIS.05209","DOI":"10.17705\/1CAIS.05209"},{"issue":"3","key":"680_CR119","doi-asserted-by":"publisher","first-page":"258","DOI":"10.1038\/s42256-022-00458-8","volume":"4","author":"P Schramowski","year":"2022","unstructured":"Schramowski, P., Turan, C., Andersen, N., Rothkopf, C. A., & Kersting, K. (2022). Large pre-trained language models contain human-like biases of what is right and wrong to do. Nature Machine Intelligence, 4(3), 258\u2013268. https:\/\/doi.org\/10.1038\/s42256-022-00458-8","journal-title":"Nature Machine Intelligence"},{"key":"680_CR120","unstructured":"Schuhmann,\u00a0C., Beaumont,\u00a0R., Vencu,\u00a0R., Gordon,\u00a0C.\u00a0W., Wightman,\u00a0R., Cherti,\u00a0M., Coombes,\u00a0T., Katta,\u00a0A., Mullis,\u00a0C., Wortsman,\u00a0M., Schramowski,\u00a0P., Kundurthy,\u00a0S.\u00a0R., Crowson,\u00a0K., Schmidt,\u00a0L., Kaczmarczyk,\u00a0R., & Jitsev,\u00a0J. (2022). LAION-5B: An open large-scale dataset for training next generation image-text models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in neural information processing systems 35. Curran Associates, Inc."},{"issue":"1","key":"680_CR121","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1007\/s12525-019-00393-4","volume":"30","author":"D Selz","year":"2020","unstructured":"Selz, D. (2020). From electronic markets to data driven insights. Electronic Markets, 30(1), 57\u201359. https:\/\/doi.org\/10.1007\/s12525-019-00393-4","journal-title":"Electronic Markets"},{"key":"680_CR122","doi-asserted-by":"publisher","unstructured":"Smits,\u00a0J., & Borghuis,\u00a0T. (2022). Generative AI and intellectual property rights. In B. Custers & E. Fosch-Villaronga (Eds.), Information Technology and Law Series. Law and Artificial Intelligence (Vol. 35, pp.\u00a0323\u2013344). T.M.C. Asser Press. https:\/\/doi.org\/10.1007\/978-94-6265-523-2_17","DOI":"10.1007\/978-94-6265-523-2_17"},{"key":"680_CR123","unstructured":"Stability.ai. (2023). Stability AI launches the first of its StableLM suite of language models. https:\/\/stability.ai\/blog\/stability-ai-launches-the-first-of-its-stablelm-suite-of-language-models"},{"key":"680_CR124","doi-asserted-by":"crossref","unstructured":"Strobel, G., Banh, L., M\u00f6ller, F., & Schoormann, T. (2024). Exploring generative artificial intelligence: A taxonomy and types. In\u00a0Hawaii International Conference on System Sciences 2024 (HICSS 2024), Hawaii, USA.","DOI":"10.24251\/HICSS.2023.546"},{"key":"680_CR125","doi-asserted-by":"publisher","unstructured":"Strobel, G., Schoormann, T., Banh, L., & M\u00f6ller, F. (2023). Artificial intelligence for sign language translation \u2013 A design science research study. Communications of the Association for Information Systems, 53(1), 42\u201364. https:\/\/doi.org\/10.17705\/1CAIS.05303","DOI":"10.17705\/1CAIS.05303"},{"key":"680_CR126","doi-asserted-by":"publisher","unstructured":"Sun, J., Liao, Q. V., Muller, M., Agarwal, M., Houde, S., Talamadupula, K., & Weisz, J. D. (2022). Investigating explainability of generative AI for code through scenario-based design. In\u00a027th International Conference on Intelligent User Interfaces (pp. 212\u2013228). ACM. https:\/\/doi.org\/10.1145\/3490099.3511119","DOI":"10.1145\/3490099.3511119"},{"issue":"2","key":"680_CR127","doi-asserted-by":"publisher","first-page":"399","DOI":"10.1287\/isre.2023.ed.v34.n2","volume":"34","author":"A Susarla","year":"2023","unstructured":"Susarla, A., Gopal, R., Thatcher, J. B., & Sarker, S. (2023). The Janus effect of generative AI: Charting the path for responsible conduct of scholarly activities in information systems. Information Systems Research, 34(2), 399\u2013408. https:\/\/doi.org\/10.1287\/isre.2023.ed.v34.n2","journal-title":"Information Systems Research"},{"key":"680_CR128","unstructured":"Synthesia. (2023). Synthesia | #1 AI Video Generation Platform. https:\/\/www.synthesia.io\/"},{"key":"680_CR129","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1007\/s12599-023-00795-x","volume":"65","author":"T Teubner","year":"2023","unstructured":"Teubner, T., Flath, C. M., Weinhardt, C., van der Aalst, W., & Hinz, O. (2023). Welcome to the era of ChatGPT et al.: The prospects of large language models. Business & Information Systems Engineering, 65, 95\u2013101. https:\/\/doi.org\/10.1007\/s12599-023-00795-x","journal-title":"Business & Information Systems Engineering"},{"key":"680_CR130","unstructured":"The Washington Post. (2022). The Google engineer who thinks the company\u2019s AI has come to life. https:\/\/www.washingtonpost.com\/technology\/2022\/06\/11\/google-ai-lamda-blake-lemoine\/"},{"key":"680_CR131","doi-asserted-by":"publisher","unstructured":"Tomczak, J. M. (2022). Deep generative modeling. Springer International Publishing. https:\/\/doi.org\/10.1007\/978-3-030-93158-2","DOI":"10.1007\/978-3-030-93158-2"},{"key":"680_CR132","unstructured":"Tomitza,\u00a0C., Schaschek,\u00a0M., Straub,\u00a0L., & Winkelmann,\u00a0A. (2023). What is the minimum to trust AI?\u2014A requirement analysis for (generative) AI-based texts. Wirtschaftsinformatik 2023 Proceedings."},{"key":"680_CR133","doi-asserted-by":"publisher","unstructured":"van den Broek, E., Sergeeva, A., & Huysman Vrije, M. (2021). When the machine meets the expert: An ethnography of developing AI for hiring. MIS Quarterly, 45(3), 1557\u20131580. https:\/\/doi.org\/10.25300\/MISQ\/2021\/16559","DOI":"10.25300\/MISQ\/2021\/16559"},{"key":"680_CR134","doi-asserted-by":"publisher","first-page":"113880","DOI":"10.1016\/j.dss.2022.113880","volume":"165","author":"C van Dun","year":"2023","unstructured":"van Dun, C., Moder, L., Kratsch, W., & R\u00f6glinger, M. (2023). ProcessGAN: Supporting the creation of business process improvement ideas through generative machine learning. Decision Support Systems, 165, 113880. https:\/\/doi.org\/10.1016\/j.dss.2022.113880","journal-title":"Decision Support Systems"},{"issue":"1","key":"680_CR135","doi-asserted-by":"publisher","first-page":"1","DOI":"10.17705\/1CAIS.05301","volume":"53","author":"C van Slyke","year":"2023","unstructured":"van Slyke, C., Johnson, R., & Sarabadani, J. (2023). Generative artificial intelligence in information systems education: Challenges, consequences, and responses. Communications of the Association for Information Systems, 53(1), 1\u201321. https:\/\/doi.org\/10.17705\/1CAIS.05301","journal-title":"Communications of the Association for Information Systems"},{"key":"680_CR136","doi-asserted-by":"publisher","first-page":"590","DOI":"10.17705\/1CAIS.05126","volume":"51","author":"PN Vasist","year":"2022","unstructured":"Vasist, P. N., & Krishnan, S. (2022). Deepfakes An integrative review of the literature and an agenda for future research. Communications of the Association for Information Systems, 51, 590\u2013636. https:\/\/doi.org\/10.17705\/1CAIS.05126","journal-title":"Communications of the Association for Information Systems"},{"key":"680_CR137","first-page":"5999","volume-title":"Advances in neural information processing systems 30","author":"A Vaswani","year":"2017","unstructured":"Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, U., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems 30 (pp. 5999\u20136009). Curran Associates Inc."},{"issue":"2","key":"680_CR138","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1038\/s41587-020-0418-2","volume":"38","author":"WP Walters","year":"2020","unstructured":"Walters, W. P., & Murcko, M. (2020). Assessing the impact of generative AI on medicinal chemistry. Nature Biotechnology, 38(2), 143\u2013145. https:\/\/doi.org\/10.1038\/s41587-020-0418-2","journal-title":"Nature Biotechnology"},{"key":"680_CR139","doi-asserted-by":"publisher","unstructured":"Wang, C., Chen, S., Wu, Y., Zhang, Z., Zhou, L., Liu, S., Chen, Z., Liu, Y., Wang, H., Li, J., He, L., Zhao, S., & Wei, F. (2023). Neural codec language models are zero-shot text to speech synthesizers. arXiv. https:\/\/doi.org\/10.48550\/arXiv.2301.02111","DOI":"10.48550\/arXiv.2301.02111"},{"issue":"4","key":"680_CR140","doi-asserted-by":"publisher","first-page":"2079","DOI":"10.1007\/s12525-022-00593-5","volume":"32","author":"J Wanner","year":"2022","unstructured":"Wanner, J., Herm, L.-V., Heinrich, K., & Janiesch, C. (2022). The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study. Electronic Markets, 32(4), 2079\u20132102. https:\/\/doi.org\/10.1007\/s12525-022-00593-5","journal-title":"Electronic Markets"},{"key":"680_CR141","doi-asserted-by":"publisher","first-page":"4939","DOI":"10.1109\/ACCESS.2020.3048309","volume":"9","author":"R Wei","year":"2021","unstructured":"Wei, R., & Mahmood, A. (2021). Recent advances in variational autoencoders with representation learning for biomedical informatics: A survey. IEEE Access, 9, 4939\u20134956. https:\/\/doi.org\/10.1109\/ACCESS.2020.3048309","journal-title":"IEEE Access"},{"key":"680_CR142","doi-asserted-by":"publisher","unstructured":"Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang, P.\u2011S., Mellor, J., Glaese, A., Cheng, M., Balle, B., Kasirzadeh, A., Biles, C., Brown, S., Kenton, Z., Hawkins, W., Stepleton, T., Birhane, A., Hendricks, L. A., Rimell, L., Isaac, W., Gabriel, I. (2022). Taxonomy of risks posed by language models. In\u00a02022 ACM Conference on Fairness, Accountability, and Transparency (pp. 214\u2013229). ACM. https:\/\/doi.org\/10.1145\/3531146.3533088","DOI":"10.1145\/3531146.3533088"},{"key":"680_CR143","unstructured":"Weisz, J., Muller, M., He, J., & Houde, S. (2023). Toward general design principles for generative AI applications. In\u00a04th Workshop on Human-AI Co-Creation with Generative Models, Sydney, Australia."},{"issue":"2","key":"680_CR144","doi-asserted-by":"publisher","first-page":"625","DOI":"10.3390\/su12020625","volume":"12","author":"S-S Weng","year":"2020","unstructured":"Weng, S.-S., & Chen, H.-C. (2020). Exploring the role of deep learning technology in the sustainable development of the music production industry. Sustainability, 12(2), 625. https:\/\/doi.org\/10.3390\/su12020625","journal-title":"Sustainability"},{"key":"680_CR145","unstructured":"Wessel,\u00a0M., Adam,\u00a0M., Benlian,\u00a0A., Majchrzak,\u00a0A., & Thies,\u00a0F. (2023). Call for papers to the special issue: Generative AI and its tranformative value for digital platforms. Journal of Management Information Systems. https:\/\/www.jmis-web.org\/cfps\/JMIS_SI_CfP_Generative_AI.pdf"},{"issue":"4","key":"680_CR146","doi-asserted-by":"publisher","first-page":"286","DOI":"10.1177\/0268396220925830","volume":"35","author":"L Willcocks","year":"2020","unstructured":"Willcocks, L. (2020). Robo-Apocalypse cancelled? Reframing the automation and future of work debate. Journal of Information Technology, 35(4), 286\u2013302. https:\/\/doi.org\/10.1177\/0268396220925830","journal-title":"Journal of Information Technology"},{"key":"680_CR147","unstructured":"Winston, P. H. (1993). Artificial intelligence (3. ed., reprinted with corr). Addison-Wesley."},{"issue":"4","key":"680_CR148","doi-asserted-by":"publisher","first-page":"2053","DOI":"10.1007\/s12525-022-00592-6","volume":"32","author":"R Yang","year":"2022","unstructured":"Yang, R., & Wibowo, S. (2022). User trust in artificial intelligence: A comprehensive conceptual framework. Electronic Markets, 32(4), 2053\u20132077. https:\/\/doi.org\/10.1007\/s12525-022-00592-6","journal-title":"Electronic Markets"},{"key":"680_CR149","doi-asserted-by":"publisher","unstructured":"Zhan, F., Yu, Y., Wu, R., Zhang, J., Lu, S., Liu, L., Kortylewski, A., Theobalt, C., & Xing, E. (2021). Multimodal Image Synthesis and Editing: A Survey. arXiv. https:\/\/doi.org\/10.48550\/arXiv.2112.13592","DOI":"10.48550\/arXiv.2112.13592"},{"key":"680_CR150","doi-asserted-by":"publisher","unstructured":"Zhang, C., Zhang, C., Zhang, M., & Kweon, I. S. (2023a). Text-to-image diffusion models in generative AI: A survey. arXiv. https:\/\/doi.org\/10.48550\/arXiv.2303.07909","DOI":"10.48550\/arXiv.2303.07909"},{"key":"680_CR151","doi-asserted-by":"publisher","unstructured":"Zhang, D., Li, W., Niu, B., & Wu, C. (2023b). A deep learning approach for detecting fake reviewers: Exploiting reviewing behavior and textual information. Decision Support Systems, 166, 113911. https:\/\/doi.org\/10.1016\/j.dss.2022.113911","DOI":"10.1016\/j.dss.2022.113911"},{"key":"680_CR152","doi-asserted-by":"publisher","unstructured":"Zhou,\u00a0J., Zhang,\u00a0Y., Luo,\u00a0Q., Parker,\u00a0A.\u00a0G., & Choudhury,\u00a0M.\u00a0de (2023). Synthetic lies: Understanding AI-generated misinformation and evaluating algorithmic and human solutions. In A. Schmidt, K. V\u00e4\u00e4n\u00e4nen, T. Goyal, P. O. Kristensson, A. Peters, S. Mueller, J. R. Williamson, & M. L. Wilson (Eds.), Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (pp.\u00a01\u201320). ACM. https:\/\/doi.org\/10.1145\/3544548.3581318","DOI":"10.1145\/3544548.3581318"}],"container-title":["Electronic Markets"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12525-023-00680-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12525-023-00680-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12525-023-00680-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,5]],"date-time":"2024-11-05T05:25:48Z","timestamp":1730784348000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12525-023-00680-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":152,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,12]]}},"alternative-id":["680"],"URL":"https:\/\/doi.org\/10.1007\/s12525-023-00680-1","relation":{},"ISSN":["1019-6781","1422-8890"],"issn-type":[{"type":"print","value":"1019-6781"},{"type":"electronic","value":"1422-8890"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"26 June 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 November 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 December 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"63"}}