{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:10:36Z","timestamp":1735585836925},"reference-count":94,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,12,12]],"date-time":"2022-12-12T00:00:00Z","timestamp":1670803200000},"content-version":"vor","delay-in-days":11,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"name":"Johann Wolfgang Goethe-Universit\u00e4t, Frankfurt am Main"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Electron Markets"],"published-print":{"date-parts":[[2022,12]]},"abstract":"Abstract<\/jats:title>Nowadays, artificial intelligence (AI) systems make predictions in numerous high stakes domains, including credit-risk assessment and medical diagnostics. Consequently, AI systems increasingly affect humans, yet many state-of-the-art systems lack transparency and thus, deny the individual\u2019s \u201cright to explanation\u201d. As a remedy, researchers and practitioners have developed explainable AI, which provides reasoning on how AI systems infer individual predictions. However, with recent legal initiatives demanding comprehensive explainability throughout the (development of an) AI system, we argue that the pre-processing stage has been unjustifiably neglected and should receive greater attention in current efforts to establish explainability. In this paper, we focus on introducing explainability to an integral part of the pre-processing stage: feature selection. Specifically, we build upon design science research to develop a design framework for explainable feature selection. We instantiate the design framework in a running software artifact and evaluate it in two focus group sessions. Our artifact helps organizations to persuasively justify feature selection to stakeholders and, thus, comply with upcoming AI legislation. We further provide researchers and practitioners with a design framework consisting of meta-requirements and design principles for explainable feature selection.<\/jats:p>","DOI":"10.1007\/s12525-022-00608-1","type":"journal-article","created":{"date-parts":[[2022,12,12]],"date-time":"2022-12-12T12:14:55Z","timestamp":1670847295000},"page":"2159-2184","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":38,"title":["Designing a feature selection method based on explainable artificial intelligence"],"prefix":"10.1007","volume":"32","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8912-7160","authenticated-orcid":false,"given":"Jan","family":"Zacharias","sequence":"first","affiliation":[]},{"given":"Moritz","family":"von Zahn","sequence":"additional","affiliation":[]},{"given":"Johannes","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Oliver","family":"Hinz","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,12]]},"reference":[{"issue":"3","key":"608_CR1","doi-asserted-by":"publisher","first-page":"643","DOI":"10.1007\/s12525-021-00459-2","volume":"31","author":"BM Abdel-Karim","year":"2021","unstructured":"Abdel-Karim, B. M., Pfeuffer, N., & Hinz, O. (2021). Machine learning in information systems-a bibliographic review and open research issues. Electronic Markets, 31(3), 643\u2013670. https:\/\/doi.org\/10.1007\/s12525-021-00459-2","journal-title":"Electronic Markets"},{"key":"608_CR2","doi-asserted-by":"publisher","unstructured":"Abedin, B. (2021). Managing the tension between opposing effects of explainability of artificial intelligence: a contingency theory perspective. Internet Research. https:\/\/doi.org\/10.1108\/INTR-05-2020-0300","DOI":"10.1108\/INTR-05-2020-0300"},{"key":"608_CR3","doi-asserted-by":"publisher","first-page":"52138","DOI":"10.1109\/ACCESS.2018.2870052","volume":"6","author":"A Adadi","year":"2018","unstructured":"Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138\u201352160. https:\/\/doi.org\/10.1109\/ACCESS.2018.2870052","journal-title":"IEEE Access"},{"key":"608_CR4","doi-asserted-by":"publisher","unstructured":"Adipat, B., Zhang, D., & Zhou, L. (2011). The effects of tree-view based presentation adaptation on mobile web browsing. MIS Quarterly, 99\u2013121. https:\/\/doi.org\/10.2307\/23043491","DOI":"10.2307\/23043491"},{"key":"608_CR5","doi-asserted-by":"publisher","unstructured":"Arrieta, A. B., D\u00edaz-Rodr\u00edguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Lopez, S.-G., Molina, D., Benjaminsh, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82\u2013115. https:\/\/doi.org\/10.1016\/j.inffus.2019.12.012","DOI":"10.1016\/j.inffus.2019.12.012"},{"issue":"2","key":"608_CR6","doi-asserted-by":"publisher","first-page":"8","DOI":"10.17705\/1jais.00664","volume":"22","author":"A Asatiani","year":"2021","unstructured":"Asatiani, A., Malo, P., Nagb\u00f8l, P. R., Penttinen, E., Rinta-Kahila, T., & Salovaara, A. (2021). Sociotechnical envelopment of artificial intelligence: An approach to organizational deployment of inscrutable artificial intelligence systems. Journal of the Association for Information Systems, 22(2), 8. https:\/\/doi.org\/10.17705\/1jais.00664","journal-title":"Journal of the Association for Information Systems"},{"key":"608_CR7","unstructured":"Awasthi, P., & George, J. (2020). A case for data democratization. Proceedings of the Americas Conference on Information Systems (AMCIS), 23."},{"issue":"1","key":"608_CR8","first-page":"629","volume":"18","author":"F Bach","year":"2017","unstructured":"Bach, F. (2017). Breaking the curse of dimensionality with convex neural networks. The Journal of Machine Learning Research, 18(1), 629\u2013681.","journal-title":"The Journal of Machine Learning Research"},{"issue":"5","key":"608_CR9","doi-asserted-by":"publisher","first-page":"3","DOI":"10.17705\/1jais.00495","volume":"19","author":"R Baskerville","year":"2018","unstructured":"Baskerville, R., Baiyere, A., Gregor, S., Hevner, A., & Rossi, M. (2018). Design science research contributions: Finding a balance between artifact and theory. Journal of the Association for Information Systems, 19(5), 3. https:\/\/doi.org\/10.17705\/1jais.00495","journal-title":"Journal of the Association for Information Systems"},{"issue":"2","key":"608_CR10","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1007\/s12599-021-00683-2","volume":"63","author":"K Bauer","year":"2021","unstructured":"Bauer, K., Hinz, O., van der Aalst, W., & Weinhardt, C. (2021a). Expl(AI)n it to me\u2013explainable AI and information systems research. Business & Information Systems Engineering, 63(2), 79\u201382. https:\/\/doi.org\/10.1007\/s12599-021-00683-2","journal-title":"Business & Information Systems Engineering"},{"key":"608_CR11","doi-asserted-by":"crossref","unstructured":"Bauer, K., von Zahn, M., & Hinz, O. (2021b). Expl(Ai)Ned: The impact of explainable artificial intelligence on cognitive processes. SAFE Working Paper No. 315. https:\/\/ssrn.com\/abstract=3872711","DOI":"10.2139\/ssrn.3872711"},{"key":"608_CR12","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswax.2020.100040","volume":"8","author":"T Baum","year":"2020","unstructured":"Baum, T., Herbold, S., & Schneider, K. (2020). GIMO: A multi-objective anytime rule mining system to ease iterative feedback from domain experts. Expert Systems with Applications: X, 8, 100040. https:\/\/doi.org\/10.1016\/j.eswax.2020.100040","journal-title":"Expert Systems with Applications: X"},{"key":"608_CR13","doi-asserted-by":"publisher","unstructured":"Belanger, F. (2012). Theorizing in information systems research using focus groups. Australasian Journal of Information Systems, 17(2). https:\/\/doi.org\/10.3127\/ajis.v17i2.695","DOI":"10.3127\/ajis.v17i2.695"},{"key":"608_CR14","unstructured":"Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., & Ruggeri, F. (2014). A Bayesian Wilcoxon signed-rank test based on the Dirichlet process. International conference on machine learning (pp. 1026\u20131034). PMLR."},{"issue":"1","key":"608_CR15","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1017\/S0140525X13000289","volume":"37","author":"RA Bentley","year":"2014","unstructured":"Bentley, R. A., O\u2019Brien, M. J., & Brock, W. A. (2014). Mapping collective behavior in the big-data era. Behavioral and Brain Sciences, 37(1), 63. https:\/\/doi.org\/10.1017\/S0140525X13000289","journal-title":"Behavioral and Brain Sciences"},{"key":"608_CR16","doi-asserted-by":"publisher","unstructured":"Bessa, M. A., Bostanabad, R., Liu, Z., Hu, A., Apley, D. W., Brinson, C., Chen, W., & Liu, W. K. (2017). A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Computer Methods in Applied Mechanics and Engineering, 320, 633\u2013667. https:\/\/doi.org\/10.1016\/j.cma.2017.03.037","DOI":"10.1016\/j.cma.2017.03.037"},{"key":"608_CR17","doi-asserted-by":"publisher","unstructured":"Bhandari, S., Kukreja, A. K., Lazar, A., Sim, A., & Wu, K. (2020). Feature selection improves tree-based classification for wireless intrusion detection. Proceedings of the 3rd International Workshop on Systems and Network Telemetry and Analytics (pp. 19\u201326). https:\/\/doi.org\/10.1145\/3391812.3396274","DOI":"10.1145\/3391812.3396274"},{"issue":"1\u20132","key":"608_CR18","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1016\/S0004-3702(97)00063-5","volume":"97","author":"AL Blum","year":"1997","unstructured":"Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1\u20132), 245\u2013271. https:\/\/doi.org\/10.1016\/S0004-3702(97)00063-5","journal-title":"Artificial Intelligence"},{"key":"608_CR19","doi-asserted-by":"publisher","first-page":"143","DOI":"10.15779\/Z38M32N986","volume":"34","author":"B Casey","year":"2019","unstructured":"Casey, B., Farhangi, A., & Vogl, R. (2019). Rethinking explainable machines: The GDPR\u2019s\u2019 right to explanation debate and the rise of algorithmic audits in enterprise. Berkeley Tech. LJ, 34, 143. https:\/\/doi.org\/10.15779\/Z38M32N986","journal-title":"Berkeley Tech. LJ"},{"key":"608_CR20","unstructured":"Chakrobartty, S., & El-Gayar, O. (2021). Explainable artificial intelligence in the medical domain: A systematic review. Proceedings of the Americas Conference on Information Systems (AMCIS)."},{"issue":"1","key":"608_CR21","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1016\/j.compeleceng.2013.11.024","volume":"40","author":"G Chandrashekar","year":"2014","unstructured":"Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16\u201328. https:\/\/doi.org\/10.1016\/j.compeleceng.2013.11.024","journal-title":"Computers & Electrical Engineering"},{"issue":"6","key":"608_CR22","doi-asserted-by":"publisher","first-page":"607","DOI":"10.1057\/ejis.2014.30","volume":"24","author":"CW Chen","year":"2015","unstructured":"Chen, C. W., & Koufaris, M. (2015). The impact of decision support system features on user overconfidence and risky behavior. European Journal of Information Systems, 24(6), 607\u2013623. https:\/\/doi.org\/10.1057\/ejis.2014.30","journal-title":"European Journal of Information Systems"},{"key":"608_CR23","doi-asserted-by":"publisher","unstructured":"Cirqueira, D., Helfert, M., & Bezbradica, M. (2021). Towards design principles for user-centric explainable AI in fraud detection. International Conference on Human-Computer Interaction (pp. 21\u201340). Springer, Cham. https:\/\/doi.org\/10.1007\/978-3-030-77772-2_2","DOI":"10.1007\/978-3-030-77772-2_2"},{"key":"608_CR24","doi-asserted-by":"publisher","unstructured":"Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319\u2013340. https:\/\/doi.org\/10.2307\/249008","DOI":"10.2307\/249008"},{"issue":"1","key":"608_CR25","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1145\/3359786","volume":"63","author":"M Du","year":"2019","unstructured":"Du, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning. Communications of the ACM, 63(1), 68\u201377. https:\/\/doi.org\/10.1145\/3359786","journal-title":"Communications of the ACM"},{"key":"608_CR26","doi-asserted-by":"publisher","unstructured":"Dunn, J., Mingardi, L., & Zhuo, Y. D. (2021). Comparing interpretability and explainability for feature selection. arXiv preprint arXiv:2105.05328. https:\/\/doi.org\/10.48550\/arXiv.2105.05328","DOI":"10.48550\/arXiv.2105.05328"},{"key":"608_CR27","doi-asserted-by":"publisher","DOI":"10.1016\/j.ecoinf.2021.101224","volume":"61","author":"D Effrosynidis","year":"2021","unstructured":"Effrosynidis, D., & Arampatzis, A. (2021). An evaluation of feature selection methods for environmental data. Ecological Informatics, 61, 101224. https:\/\/doi.org\/10.1016\/j.ecoinf.2021.101224","journal-title":"Ecological Informatics"},{"issue":"6","key":"608_CR28","doi-asserted-by":"publisher","first-page":"3333","DOI":"10.1007\/s11948-020-00276-4","volume":"26","author":"H Felzmann","year":"2020","unstructured":"Felzmann, H., Fosch-Villaronga, E., Lutz, C., & Tam\u00f2-Larrieux, A. (2020). Towards transparency by design for artificial intelligence. Science and Engineering Ethics, 26(6), 3333\u20133361. https:\/\/doi.org\/10.1007\/s11948-020-00276-4","journal-title":"Science and Engineering Ethics"},{"key":"608_CR29","doi-asserted-by":"publisher","unstructured":"Fernandez, C., Provost, F., & Han, X. (2022). Explaining data-driven decisions made by AI systems: The counterfactual approach. MIS Quarterly, 46(3), 1635\u20131660. https:\/\/doi.org\/10.25300\/MISQ\/2022\/16749","DOI":"10.25300\/MISQ\/2022\/16749"},{"key":"608_CR30","unstructured":"F\u00f6rster, M., Klier, M., Kluge, K., & Sigler, I. (2020). Fostering human agency: A process for the design of user-centric XAI systems. ICIS 2020 Proceedings, 12."},{"key":"608_CR31","doi-asserted-by":"publisher","first-page":"144352","DOI":"10.1109\/ACCESS.2021.3119110","volume":"9","author":"D Fryer","year":"2021","unstructured":"Fryer, D., Str\u00fcmke, I., & Nguyen, H. (2021). Shapley values for feature selection: The good, the bad, and the axioms. IEEE Access, 9, 144352\u2013144360. https:\/\/doi.org\/10.1109\/ACCESS.2021.3119110","journal-title":"IEEE Access"},{"key":"608_CR32","unstructured":"General Data Protection Regulation (GDPR). (2018). General data protection regulation (GDPR) \u2013 final text neatly arranged. [online]. Available at: https:\/\/gdpr-info.eu. Accessed Feb\u00a02022."},{"key":"608_CR33","unstructured":"Gnewuch, U., Morana, S., & Maedche, A. (2017). Towards designing cooperative and social conversational agents for customer service. Proceedings of the International Conference on Information Systems (ICIS)."},{"issue":"1","key":"608_CR34","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1177\/1094428112452151","volume":"16","author":"DA Gioia","year":"2013","unstructured":"Gioia, D. A., Corley, K. G., & Hamilton, A. L. (2013). Seeking qualitative rigor in inductive research: Notes on the Gioia methodology. Organizational Research Methods, 16(1), 15\u201331. https:\/\/doi.org\/10.1177\/1094428112452151","journal-title":"Organizational Research Methods"},{"key":"608_CR35","doi-asserted-by":"publisher","unstructured":"Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 611\u2013642. https:\/\/doi.org\/10.2307\/25148742","DOI":"10.2307\/25148742"},{"key":"608_CR36","doi-asserted-by":"publisher","unstructured":"Gregor, S., Chandra Kruse, L., & Seidel, S. (2020). Research perspectives: The anatomy of a design principle. Journal of the Association for Information Systems, 21(6), 2. https:\/\/doi.org\/10.17705\/1jais.00649","DOI":"10.17705\/1jais.00649"},{"key":"608_CR37","doi-asserted-by":"publisher","unstructured":"Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157\u20131182. https:\/\/doi.org\/10.1162\/153244303322753616","DOI":"10.1162\/153244303322753616"},{"key":"608_CR38","doi-asserted-by":"publisher","unstructured":"Herse, S., Vitale, J., Tonkin, M., Ebrahimian, D., Ojha, S., Johnston, B., Judge W., & Williams, M. A. (2018). Do you trust me, blindly? Factors influencing trust towards a robot recommender system. 2018 27th IEEE international symposium on robot and human interactive communication (RO-MAN) (pp. 7\u201314). https:\/\/doi.org\/10.1109\/ROMAN.2018.8525581","DOI":"10.1109\/ROMAN.2018.8525581"},{"key":"608_CR39","doi-asserted-by":"publisher","unstructured":"Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 75\u2013105. https:\/\/doi.org\/10.2307\/25148625","DOI":"10.2307\/25148625"},{"key":"608_CR40","doi-asserted-by":"publisher","unstructured":"H.R.6580 \u2013 Algorithmic Accountability Act of 2022. https:\/\/doi.org\/10.2139\/ssrn.4135237","DOI":"10.2139\/ssrn.4135237"},{"issue":"9","key":"608_CR41","doi-asserted-by":"publisher","first-page":"1277","DOI":"10.1177\/1049732305276687","volume":"15","author":"HF Hsieh","year":"2005","unstructured":"Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277\u20131288. https:\/\/doi.org\/10.1177\/1049732305276687","journal-title":"Qualitative Health Research"},{"key":"608_CR42","doi-asserted-by":"publisher","unstructured":"Iivari, J., Rotvit Perlt Hansen, M., & Haj-Bolouri, A. (2021). A proposal for minimum reusability evaluation of design principles. European Journal of Information Systems, 30(3), 286\u2013303. https:\/\/doi.org\/10.1080\/0960085X.2020.1793697","DOI":"10.1080\/0960085X.2020.1793697"},{"key":"608_CR43","doi-asserted-by":"publisher","unstructured":"Jia, K., & Zhang, N. (2022). Categorization and eccentricity of AI risks: A comparative study of the global AI guidelines. Electronic Markets, 32(1), 1\u201313. https:\/\/doi.org\/10.1007\/s12525-021-00480-5","DOI":"10.1007\/s12525-021-00480-5"},{"key":"608_CR44","doi-asserted-by":"publisher","unstructured":"Kalousis, A., Prados, J., & Hilario, M. (2005). Stability of feature selection algorithms. Fifth IEEE International Conference on Data Mining (ICDM'05) (pp. 8). IEEE. https:\/\/doi.org\/10.1109\/ICDM.2005.135","DOI":"10.1109\/ICDM.2005.135"},{"key":"608_CR45","doi-asserted-by":"publisher","unstructured":"Kellner, D., Lowin, M., von Zahn, M., & Chen, J. (2021). Towards designing a user-centric decision support system for predictive maintenance in SMEs. INFORMATIK 2021. Gesellschaft f\u00fcr Informatik, 1255\u20131260. https:\/\/doi.org\/10.18420\/informatik2021-104","DOI":"10.18420\/informatik2021-104"},{"issue":"11","key":"608_CR46","doi-asserted-by":"publisher","first-page":"2767","DOI":"10.1016\/j.jbankfin.2010.06.001","volume":"34","author":"AE Khandani","year":"2010","unstructured":"Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 34(11), 2767\u20132787. https:\/\/doi.org\/10.1016\/j.jbankfin.2010.06.001","journal-title":"Journal of Banking & Finance"},{"issue":"1","key":"608_CR47","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1017\/beq.2021.3","volume":"32","author":"TW Kim","year":"2022","unstructured":"Kim, T. W., & Routledge, B. R. (2022). Why a right to an explanation of algorithmic decision-making should exist: A trust-based approach. Business Ethics Quarterly, 32(1), 75\u2013102. https:\/\/doi.org\/10.1017\/beq.2021.3","journal-title":"Business Ethics Quarterly"},{"issue":"1\u20132","key":"608_CR48","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1016\/S0004-3702(97)00043-X","volume":"97","author":"R Kohavi","year":"1997","unstructured":"Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1\u20132), 273\u2013324. https:\/\/doi.org\/10.1016\/S0004-3702(97)00043-X","journal-title":"Artificial Intelligence"},{"key":"608_CR49","doi-asserted-by":"publisher","unstructured":"Komiak, S. Y., & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS Quarterly, 941\u2013960. https:\/\/doi.org\/10.2307\/25148760","DOI":"10.2307\/25148760"},{"issue":"1","key":"608_CR50","doi-asserted-by":"crossref","first-page":"81","DOI":"10.33137\/cal.v8i1.36281","volume":"8","author":"R Koulu","year":"2021","unstructured":"Koulu, R. (2021). Crafting digital transparency: Implementing legal values into algorithmic design. Critical Analysis of Law, 8(1), 81\u2013100.","journal-title":"Critical Analysis of Law"},{"issue":"12","key":"608_CR51","doi-asserted-by":"publisher","first-page":"1614","DOI":"10.1109\/TVCG.2014.2346482","volume":"20","author":"J Krause","year":"2014","unstructured":"Krause, J., Perer, A., & Bertini, E. (2014). INFUSE: Interactive feature selection for predictive modeling of high dimensional data. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1614\u20131623. https:\/\/doi.org\/10.1109\/TVCG.2014.2346482","journal-title":"IEEE Transactions on Visualization and Computer Graphics"},{"key":"608_CR52","doi-asserted-by":"publisher","unstructured":"Krause, J., Perer, A., & Ng, K. (2016). Interacting with predictions: Visual inspection of black-box machine learning models. Proceedings of the 2016 CHI conference on human factors in computing systems (pp. 5686\u20135697). https:\/\/doi.org\/10.1145\/2858036.2858529","DOI":"10.1145\/2858036.2858529"},{"issue":"5","key":"608_CR53","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1057\/ejis.2008.40","volume":"17","author":"B Kuechler","year":"2008","unstructured":"Kuechler, B., & Vaishnavi, V. (2008). On theory development in design science research: Anatomy of a research project. European Journal of Information Systems, 17(5), 489\u2013504. https:\/\/doi.org\/10.1057\/ejis.2008.40","journal-title":"European Journal of Information Systems"},{"key":"608_CR54","doi-asserted-by":"publisher","unstructured":"K\u00fchl, N., Goutier, M., Hirt, R., & Satzger, G. (2020). Machine learning in artificial intelligence: Towards a common understanding. arXiv preprint arXiv:2004.04686. https:\/\/doi.org\/10.48550\/arXiv.2004.04686","DOI":"10.48550\/arXiv.2004.04686"},{"key":"608_CR55","doi-asserted-by":"publisher","unstructured":"Kulesza, T., Burnett, M., Wong, W. K., & Stumpf, S. (2015). Principles of explanatory debugging to personalize interactive machine learning. Proceedings of the 20th International Conference on Intelligent User Interfaces (pp. 126\u2013137). https:\/\/doi.org\/10.1145\/2678025.2701399","DOI":"10.1145\/2678025.2701399"},{"key":"608_CR56","doi-asserted-by":"publisher","unstructured":"Li, J., Yan, X. S., Chaudhary, D., Avula, V., Mudiganti, S., Husby, H., Shahjouei, S., Afshar, A., Stewart, W. F., Yeasin, M., Zand, R., & Abedi, V. (2021). Imputation of missing values for electronic health record laboratory data. NPJ Digital Medicine, 4(1), 1\u201314. https:\/\/doi.org\/10.1038\/s41746-021-00518-0","DOI":"10.1038\/s41746-021-00518-0"},{"issue":"3","key":"608_CR57","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1145\/3236386.3241340","volume":"16","author":"ZC Lipton","year":"2018","unstructured":"Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31\u201357. https:\/\/doi.org\/10.1145\/3236386.3241340","journal-title":"Queue"},{"key":"608_CR58","doi-asserted-by":"publisher","unstructured":"Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30. https:\/\/doi.org\/10.48550\/arXiv.1705.07874","DOI":"10.48550\/arXiv.1705.07874"},{"key":"608_CR59","doi-asserted-by":"publisher","unstructured":"Lundberg, S. M., Erion, G. G., & Lee, S. I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888. https:\/\/doi.org\/10.48550\/arXiv.1802.03888","DOI":"10.48550\/arXiv.1802.03888"},{"key":"608_CR60","doi-asserted-by":"publisher","unstructured":"Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S. I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56\u201367. https:\/\/doi.org\/10.1038\/s42256-019-0138-9","DOI":"10.1038\/s42256-019-0138-9"},{"key":"608_CR61","doi-asserted-by":"publisher","unstructured":"Maass, W., Parsons, J., Purao, S., Storey, V. C., & Woo, C. (2018). Data-driven meets theory-driven research in the era of big data: Opportunities and challenges for information systems research. Journal of the Association for Information Systems, 19(12), 1. https:\/\/doi.org\/10.17705\/1jais.00526","DOI":"10.17705\/1jais.00526"},{"issue":"4","key":"608_CR62","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1016\/0167-9236(94)00041-2","volume":"15","author":"ST March","year":"1995","unstructured":"March, S. T., & Smith, G. F. (1995). Design and natural science research on information technology. Decision Support Systems, 15(4), 251\u2013266. https:\/\/doi.org\/10.1016\/0167-9236(94)00041-2","journal-title":"Decision Support Systems"},{"key":"608_CR63","doi-asserted-by":"publisher","unstructured":"Marc\u00edlio, W. E., & Eler, D. M. (2020). From explanations to feature selection: assessing shap values as feature selection mechanism. 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) (pp. 340\u2013347). IEEE. https:\/\/doi.org\/10.1109\/SIBGRAPI51738.2020.00053","DOI":"10.1109\/SIBGRAPI51738.2020.00053"},{"key":"608_CR64","doi-asserted-by":"publisher","unstructured":"McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D. Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., Ledsam, J. R., Melnick, D., Mostofi, H., Peng, L., Reicher, J. J., Romera-Paredes, B., Sidebottom, R., Suleyman, M., Tse, D., Young, K. C., De Fauw, J. & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89\u201394. https:\/\/doi.org\/10.1038\/s41586-019-1799-6","DOI":"10.1038\/s41586-019-1799-6"},{"issue":"1","key":"608_CR65","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1080\/10580530.2020.1849465","volume":"39","author":"C Meske","year":"2022","unstructured":"Meske, C., Bunde, E., Schneider, J., & Gersch, M. (2022). Explainable artificial intelligence: Objectives, stakeholders, and future research opportunities. Information Systems Management, 39(1), 53\u201363. https:\/\/doi.org\/10.1080\/10580530.2020.1849465","journal-title":"Information Systems Management"},{"key":"608_CR66","doi-asserted-by":"publisher","unstructured":"Meske, C., & Bunde, E. (2022). Design principles for user interfaces in AI-Based decision support systems: The case of explainable hate speech detection. Information Systems Frontiers, 1-31. https:\/\/doi.org\/10.1007\/s10796-021-10234-5","DOI":"10.1007\/s10796-021-10234-5"},{"key":"608_CR67","doi-asserted-by":"publisher","unstructured":"Meth, H., Mueller, B., & Maedche, A. (2015). Designing a requirement mining system. Journal of the Association for Information Systems, 16(9), 2. https:\/\/doi.org\/10.17705\/1jais.00408","DOI":"10.17705\/1jais.00408"},{"issue":"8","key":"608_CR68","first-page":"57","volume":"5","author":"N Mlambo","year":"2016","unstructured":"Mlambo, N., Cheruiyot, W. K., & Kimwele, M. W. (2016). A survey and comparative study of filter and wrapper feature selection techniques. International Journal of Engineering and Science (IJES), 5(8), 57\u201367.","journal-title":"International Journal of Engineering and Science (IJES)"},{"issue":"2","key":"608_CR69","doi-asserted-by":"publisher","first-page":"488","DOI":"10.1080\/07421222.2018.1451955","volume":"35","author":"O M\u00fcller","year":"2018","unstructured":"M\u00fcller, O., Fay, M., & Vom Brocke, J. (2018). The effect of big data and analytics on firm performance: An econometric analysis considering industry characteristics. Journal of Management Information Systems, 35(2), 488\u2013509. https:\/\/doi.org\/10.1080\/07421222.2018.1451955","journal-title":"Journal of Management Information Systems"},{"issue":"44","key":"608_CR70","doi-asserted-by":"publisher","first-page":"22071","DOI":"10.1073\/pnas.1900654116","volume":"116","author":"WJ Murdoch","year":"2019","unstructured":"Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44), 22071\u201322080. https:\/\/doi.org\/10.1073\/pnas.1900654116","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"608_CR71","doi-asserted-by":"publisher","unstructured":"Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., & Loncarski, J. (2018). Machine learning approach for predictive maintenance in industry 4.0. 2018 14th IEEE\/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA) (pp. 1\u20136). IEEE. https:\/\/doi.org\/10.1109\/MESA.2018.8449150","DOI":"10.1109\/MESA.2018.8449150"},{"key":"608_CR72","unstructured":"Pfeuffer, N. (2021). Explainability in interactive machine learning: Novel avenues for information systems research. Proceedings of the Pacific Asia Conference on Information Systems (PACIS), 231. https:\/\/aisel.aisnet.org\/pacis2021\/231"},{"key":"608_CR73","doi-asserted-by":"crossref","unstructured":"Phillips, P. J., Hahn, C. A., Fontana, P. C., Broniatowski, D. A., & Przybocki, M. A. (2020). Four principles of explainable artificial intelligence. Gaithersburg, Maryland.","DOI":"10.6028\/NIST.IR.8312-draft"},{"key":"608_CR74","doi-asserted-by":"publisher","unstructured":"Plale, B. (2019). Transparency by design in eScience research. 2019 15th International Conference on eScience (eScience) (pp. 428\u2013431). IEEE. https:\/\/doi.org\/10.1109\/eScience.2019.00055","DOI":"10.1109\/eScience.2019.00055"},{"key":"608_CR75","unstructured":"Prat, N., Comyn-Wattiau, I., & Akoka, J. (2014). Artifact evaluation in information systems design-science research- A holistic view. Pacific Asia Conference on Information Systems (PACIS), 23, 1\u201316."},{"key":"608_CR76","doi-asserted-by":"publisher","unstructured":"Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research, 3, 1371\u20131382. https:\/\/dl.acm.org\/doi\/https:\/\/doi.org\/10.5555\/944919.944978","DOI":"10.5555\/944919.944978"},{"key":"608_CR77","doi-asserted-by":"publisher","unstructured":"Ribeiro, M. T., Singh, S., & Guestrin, C. (2016).\u00a0\u201cWhy should I trust you?\u201d\u00a0Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135\u20131144). https:\/\/doi.org\/10.1145\/2939672.2939778","DOI":"10.1145\/2939672.2939778"},{"key":"608_CR78","unstructured":"Schemmer, M., Hemmer, P., K\u00fchl, N., & Sch\u00e4fer, S. (2022). Designing resilient AI-based robo-advisors: A prototype for real estate appraisal. 17th International Conference on Design Science Research in Information Systems and Technology, 1st\u20133rd June 2022, St. Petersburg, FL."},{"key":"608_CR79","doi-asserted-by":"publisher","unstructured":"Schlegel, U., Arnout, H., El-Assady, M., Oelke, D., & Keim, D. A. (2019). Towards a rigorous evaluation of xai methods on time series. 2019 IEEE\/CVF International Conference on Computer Vision Workshop (ICCVW) (pp. 4197\u20134201). IEEE. https:\/\/doi.org\/10.1109\/ICCVW.2019.00516","DOI":"10.1109\/ICCVW.2019.00516"},{"key":"608_CR80","doi-asserted-by":"publisher","DOI":"10.1287\/mnsc.2021.4190","author":"J Senoner","year":"2021","unstructured":"Senoner, J., Netland, T., & Feuerriegel, S. (2021). Using explainable artificial intelligence to improve process quality: Evidence from semiconductor manufacturing. Management Science. https:\/\/doi.org\/10.1287\/mnsc.2021.4190","journal-title":"Management Science"},{"issue":"2","key":"608_CR81","doi-asserted-by":"publisher","first-page":"96","DOI":"10.1057\/palgrave.ivs.9500091","volume":"4","author":"J Seo","year":"2005","unstructured":"Seo, J., & Shneiderman, B. (2005). A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization, 4(2), 96\u2013113. https:\/\/doi.org\/10.1057\/palgrave.ivs.9500091","journal-title":"Information Visualization"},{"key":"608_CR82","doi-asserted-by":"crossref","unstructured":"Shapley, S. (1953). A value for n-person games. Contributions to the Theory of Games II. Annals of Mathematical Studies, 28. Princeton University Press.","DOI":"10.1515\/9781400881970-018"},{"issue":"1","key":"608_CR83","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1471-2105-8-25","volume":"8","author":"C Strobl","year":"2007","unstructured":"Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1), 1\u201321. https:\/\/doi.org\/10.1186\/1471-2105-8-25","journal-title":"BMC Bioinformatics"},{"key":"608_CR84","doi-asserted-by":"publisher","unstructured":"Teso, S., & Kersting, K. (2019). Explanatory interactive machine learning. Proceedings of the 2019 AAAI\/ACM Conference on AI, Ethics, and Society (pp. 239\u2013245). https:\/\/doi.org\/10.1145\/3306618.3314293","DOI":"10.1145\/3306618.3314293"},{"key":"608_CR85","doi-asserted-by":"publisher","unstructured":"Toreini, P., Langner, M., Maedche, A., Morana, S., & Vogel, T. (2022). Designing attentive information dashboards. Journal of the Association for Information Systems, 2021. https:\/\/doi.org\/10.17705\/1jais.00732","DOI":"10.17705\/1jais.00732"},{"key":"608_CR86","doi-asserted-by":"publisher","unstructured":"Venable, J., Pries-Heje, J., & Baskerville, R. (2012). A comprehensive framework for evaluation in design science research. International conference on design science research in information systems (pp. 423\u2013438). Springer, Berlin, Heidelberg. https:\/\/doi.org\/10.1007\/978-3-642-29863-9_31","DOI":"10.1007\/978-3-642-29863-9_31"},{"issue":"1","key":"608_CR87","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1057\/ejis.2014.36","volume":"25","author":"J Venable","year":"2016","unstructured":"Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: A framework for evaluation in design science research. European Journal of Information Systems, 25(1), 77\u201389. https:\/\/doi.org\/10.1057\/ejis.2014.36","journal-title":"European Journal of Information Systems"},{"key":"608_CR88","doi-asserted-by":"publisher","unstructured":"Verleysen, M., & Fran\u00e7ois, D. (2005). The curse of dimensionality in data mining and time series prediction. International work-conference on artificial neural networks (pp. 758\u2013770). Springer, Berlin, Heidelberg. https:\/\/doi.org\/10.1007\/11494669_93","DOI":"10.1007\/11494669_93"},{"key":"608_CR89","doi-asserted-by":"publisher","unstructured":"Wang, D., Yang, Q., Abdul, A., & Lim, B. Y. (2019). Designing theory-driven user-centric explainable AI. Proceedings of the 2019 CHI conference on human factors in computing systems (pp. 1\u201315). https:\/\/doi.org\/10.1145\/3290605.3300831","DOI":"10.1145\/3290605.3300831"},{"key":"608_CR90","doi-asserted-by":"publisher","unstructured":"Xiaomao, X., Xudong, Z., & Yuanfang, W. (2019). A comparison of feature selection methodology for solving classification problems in finance. Journal of Physics: Conference Series (vol. 1284, No. 1, p. 012026). IOP Publishing. https:\/\/doi.org\/10.1088\/1742-6596\/1284\/1\/012026","DOI":"10.1088\/1742-6596\/1284\/1\/012026"},{"key":"608_CR91","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1016\/j.dss.2017.12.001","volume":"106","author":"L Zhang","year":"2018","unstructured":"Zhang, L., Mistry, K., Lim, C. P., & Neoh, S. C. (2018). Feature selection using firefly optimization for classification and regression models. Decision Support Systems, 106, 64\u201385. https:\/\/doi.org\/10.1016\/j.dss.2017.12.001","journal-title":"Decision Support Systems"},{"key":"608_CR92","unstructured":"Zhang, X., Du, Q., & Zhang, Z. (2020). An explainable machine learning framework for fake financial news detection. International Conference on Information Systems (ICIS)."},{"key":"608_CR93","doi-asserted-by":"publisher","unstructured":"Zhao, J., Karimzadeh, M., Masjedi, A., Wang, T., Zhang, X., Crawford, M. M., & Ebert, D. S. (2019). Featureexplorer: Interactive feature selection and exploration of regression models for hyperspectral images. 2019 IEEE Visualization Conference (VIS) (pp. 161\u2013165). IEEE. https:\/\/doi.org\/10.1109\/VISUAL.2019.8933619","DOI":"10.1109\/VISUAL.2019.8933619"},{"key":"608_CR94","doi-asserted-by":"publisher","unstructured":"Zieglmeier, V., & Pretschner, A. (2021). Trustworthy transparency by design. arXiv preprint. https:\/\/doi.org\/10.48550\/arXiv.2103.10769","DOI":"10.48550\/arXiv.2103.10769"}],"container-title":["Electronic Markets"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12525-022-00608-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12525-022-00608-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12525-022-00608-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,2]],"date-time":"2023-12-02T20:59:37Z","timestamp":1701550777000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12525-022-00608-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12]]},"references-count":94,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2022,12]]}},"alternative-id":["608"],"URL":"https:\/\/doi.org\/10.1007\/s12525-022-00608-1","relation":{},"ISSN":["1019-6781","1422-8890"],"issn-type":[{"value":"1019-6781","type":"print"},{"value":"1422-8890","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,12]]},"assertion":[{"value":"27 May 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 October 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 December 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}