{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T07:05:42Z","timestamp":1742799942368},"reference-count":60,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2009,9,1]],"date-time":"2009-09-01T00:00:00Z","timestamp":1251763200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Memetic Comp."],"published-print":{"date-parts":[[2010,3]]},"DOI":"10.1007\/s12293-009-0012-0","type":"journal-article","created":{"date-parts":[[2009,8,31]],"date-time":"2009-08-31T08:19:59Z","timestamp":1251706799000},"page":"3-24","source":"Crossref","is-referenced-by-count":85,"title":["Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization"],"prefix":"10.1007","volume":"2","author":[{"given":"Yu","family":"Wang","sequence":"first","affiliation":[]},{"given":"Bin","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2009,9,1]]},"reference":[{"issue":"3","key":"12_CR1","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1109\/TEVC.2005.857073","volume":"10","author":"MA Abido","year":"2006","unstructured":"Abido MA (2006) Multi-objective evolutionary algorithms for electric power dispatch problem. IEEE Trans Evol Comput 10(3): 315\u2013329","journal-title":"IEEE Trans Evol Comput"},{"key":"12_CR2","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1007\/3-540-32400-3_9","volume":"1","author":"P Amato","year":"2005","unstructured":"Amato P, Farina M (2005) An alife-inspired evolutionary algorithm for dynamic multiobjective optimization problems. Adv Soft Comput 1: 113\u2013125","journal-title":"Adv Soft Comput"},{"key":"12_CR3","unstructured":"Annunziato M, Bertini I, Pannicelli A, Pizzuti S (2001) Evolutionary control and optimization: an industrial application for combustion processes. In: Proceedings of EUROGEN, Athens, Greece, September, pp 367\u2013372"},{"key":"12_CR4","unstructured":"Bhattacharya M, Lu G (2003) A dynamic approximate fitness-based hybrid EA for optimization problems. In: Proceedings of congress evolutionary computation, pp 1879\u20131886"},{"key":"12_CR5","unstructured":"Bierwirth C, Kopfer H (1994) Dynamic task scheduling with genetic algorithms in manufacturing systems. Technical report, Department of Economics, University of Bremen, Bremen, Germany"},{"issue":"3","key":"12_CR6","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1016\/j.asoc.2006.03.001","volume":"7","author":"Z Bingul","year":"2007","unstructured":"Bingul Z (2007) Adaptive genetic algorithms applied to dynamic multiobjective problems. Appl Soft Comput 7(3): 791\u2013799","journal-title":"Appl Soft Comput"},{"key":"12_CR7","first-page":"29","volume":"51","author":"T Blackwell","year":"2007","unstructured":"Blackwell T (2007) Particle swarm optimization in dynamic environments. Evol Comput Dyn Uncertain Environ 51: 29\u201349","journal-title":"Evol Comput Dyn Uncertain Environ"},{"key":"12_CR8","unstructured":"Blackwell T, Bentley PJ (2002) Dynamic search with charged swarms. In: Proceedings of genetic evolutionary computations conference. Morgan Kaufmann, London, pp 19\u201326"},{"key":"12_CR9","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1007\/978-3-540-24653-4_50","volume":"3005","author":"T Blackwell","year":"2004","unstructured":"Blackwell T, Branke J (2004) Multi-swarm optimization in dynamic environments. Appl Evol Comput 3005: 489\u2013500","journal-title":"Appl Evol Comput"},{"issue":"4","key":"12_CR10","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1109\/TEVC.2005.857074","volume":"10","author":"T Blackwell","year":"2006","unstructured":"Blackwell T, Branke J (2006) Multi-swarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans Evol Comput 10(4): 459\u2013472","journal-title":"IEEE Trans Evol Comput"},{"key":"12_CR11","first-page":"1875","volume":"3","author":"J Branke","year":"1999","unstructured":"Branke J (1999) Memory enhanced evolutionary algorithms for changing optimization problems. Proc Congr Evol Comput 3: 1875\u20131882","journal-title":"Proc Congr Evol Comput"},{"key":"12_CR12","unstructured":"Branke J, Schmeck H (2002) Designing evolutionary algorithms for dynamic optimization problems. In: Proceedings of theory and applications of evolutionary computation, recent trends. Springer, Heidelberg, pp 239\u2013262"},{"issue":"3","key":"12_CR13","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1109\/TEVC.2007.895269","volume":"12","author":"TM Chan","year":"2008","unstructured":"Chan TM, Man KF, Kwong S, Tang KS (2008) A jumping gene paradigm for evolutionary multiobjective optimization. IEEE Trans Evol Comput 12(3): 143\u2013159","journal-title":"IEEE Trans Evol Comput"},{"key":"12_CR14","doi-asserted-by":"crossref","unstructured":"Cobb HG (1990) An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. Tech Rep AIC-90-001, Naval Res Lab, Washington, DC","DOI":"10.21236\/ADA229159"},{"key":"12_CR15","doi-asserted-by":"crossref","unstructured":"Coello C, Van Veldhuizen D, Lamont G (2002) Evolutionary algorithms for solving multi-objective problems. In: Ser. Genetic algorithms and evolutionary computation. Kluwer, Norwell","DOI":"10.1007\/978-1-4757-5184-0"},{"key":"12_CR16","volume-title":"Multi-objective optimization using evolutionary algorithms","author":"K Deb","year":"2001","unstructured":"Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York"},{"key":"12_CR17","doi-asserted-by":"crossref","unstructured":"Deb K, Agrawal S (1999) A niched-penalty approach for constraint handling in genetic algorithms. In: Proceedings of international conference on artifical neural networks and genetic algorithms. Springer, Heidelberg, pp 235\u2013243","DOI":"10.1007\/978-3-7091-6384-9_40"},{"key":"12_CR18","unstructured":"Deb K. http:\/\/www.iitk.ac.in\/kangal\/code\/newnsga\/nsga2code.tar"},{"key":"12_CR19","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","volume":"6","author":"K Deb","year":"2002","unstructured":"Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6: 182\u2013197","journal-title":"IEEE Trans Evol Comput"},{"issue":"4","key":"12_CR20","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1162\/106365605774666895","volume":"13","author":"K Deb","year":"2005","unstructured":"Deb K, Mohan M, Mishra S (2005) Evaluating the \u03b5-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solution. MIT Evol Comput 13(4): 501\u2013502","journal-title":"MIT Evol Comput"},{"issue":"15","key":"12_CR21","doi-asserted-by":"crossref","first-page":"3096","DOI":"10.1016\/j.ins.2008.01.020","volume":"178","author":"WL Du","year":"2008","unstructured":"Du WL, Li B (2008) Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf Sci 178(15): 3096\u20133109","journal-title":"Inf Sci"},{"key":"12_CR22","doi-asserted-by":"crossref","unstructured":"Emmerich M, Beume N, Naujoks B (2005) An EMO algorithm using the hypervolume measure as selection criterion. In: Proceedings of third international conference on evolutionary multi-criterion optimization (EMO 2005), vol 3410. Springer, Berlin, pp 62\u201376","DOI":"10.1007\/978-3-540-31880-4_5"},{"issue":"5","key":"12_CR23","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1109\/TEVC.2004.831456","volume":"8","author":"M Farina","year":"2004","unstructured":"Farina M, Amato P, Deb K (2004) Dynamic multi-objective optimization problems: test cases approximations and applications. IEEE Trans Evol Comput 8(5): 425\u2013442","journal-title":"IEEE Trans Evol Comput"},{"issue":"3","key":"12_CR24","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1109\/TEVC.2006.882428","volume":"11","author":"CK Goh","year":"2007","unstructured":"Goh CK, Tan KC (2007) An investigation on noisy environments in evolutionary multiobjective optimization. IEEE Trans Evol Comput 11(3): 354\u2013381","journal-title":"IEEE Trans Evol Comput"},{"issue":"2","key":"12_CR25","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1109\/TCBB.2007.070203","volume":"4","author":"J Handl","year":"2007","unstructured":"Handl J, Kell DB, Knowles J (2007) Multi-objective optimization in bioinformatics and computational biology. IEEE\/ACM Trans Comput Biol Bioinform 4(2): 279\u2013292","journal-title":"IEEE\/ACM Trans Comput Biol Bioinform"},{"key":"12_CR26","doi-asserted-by":"crossref","unstructured":"Hatzakis I, Wallace D (2006) Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. In: Proceedings of genetic and evolutionary computation conference (GECCO), pp 1201\u20131208","DOI":"10.1145\/1143997.1144187"},{"key":"12_CR27","unstructured":"Huang VL, Suganthan PN, Baskar S (2005) Multiobjective differential evolution with external archive. Technical report, Nanyang Technological University, Singapore"},{"key":"12_CR28","doi-asserted-by":"crossref","unstructured":"Huang VL, Qin AK, Suganthan PN, Tasgetiren MF (2007) Multi-objective optimization based on self-adaptive differential evolution. In: Proceedings of IEEE conference on evolutionary computation, 25\u201328 September 2007, Singapore","DOI":"10.1109\/CEC.2007.4424939"},{"issue":"2","key":"12_CR29","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1109\/TEVC.2003.810752","volume":"7","author":"H Ishibuchi","year":"2003","unstructured":"Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7(2): 204\u2013223","journal-title":"IEEE Trans Evol Comput"},{"issue":"3","key":"12_CR30","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1109\/TEVC.2005.846356","volume":"9","author":"Y Jin","year":"2005","unstructured":"Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments\u2014a survey. IEEE Trans Evol Comput 9(3): 303\u2013317","journal-title":"IEEE Trans Evol Comput"},{"key":"12_CR31","first-page":"525","volume-title":"Proceedings of evolutionary workshops 2004, LNCS3005","author":"YC Jin","year":"2004","unstructured":"Jin YC, Sendhoff B et\u00a0al (2004) Constructing dynamic optimization test problems using the multiobjective optimization concept. In: Raidl GR (eds) Proceedings of evolutionary workshops 2004, LNCS3005. Springer, Berlin, pp 525\u2013536"},{"issue":"1","key":"12_CR32","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/TEVC.2005.851274","volume":"10","author":"J Knowles","year":"2006","unstructured":"Knowles J (2006) ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans Evol Comput 10(1): 50\u201366","journal-title":"IEEE Trans Evol Comput"},{"key":"12_CR33","doi-asserted-by":"crossref","unstructured":"Knowles J, Corne D (1999) The Pareto archived evolution strategy: a new baseline algorithm for multiobjective optimization. In: Proceedings of 1999 congress on evolutionary computation, Piscataway, NJ, pp 9\u2013105","DOI":"10.1109\/CEC.1999.781913"},{"key":"12_CR34","doi-asserted-by":"crossref","unstructured":"Knowles JD, Corne DW (2000) M-PAES: a memetic algorithm for multiobjective optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp 325\u2013332","DOI":"10.1109\/CEC.2000.870313"},{"key":"12_CR35","doi-asserted-by":"crossref","unstructured":"Kukkonen S, Lampinen J (2007) Performance assessment of generalized differential evolution 3 (GDE3) with a given set of problems. In: Proceedings of IEEE conference on evolutionary computation, 25\u201328 September 2007, Singapore","DOI":"10.1109\/CEC.2007.4424938"},{"key":"12_CR36","doi-asserted-by":"crossref","unstructured":"Kumar A, Sharma D, Deb K (2007) A hybrid multi-objective optimization procedure using PCX based NSGA-II and sequential quadratic programming. In: Proceedings of IEEE conference on evolutionary computation, 25\u201328 September 2007, Singapore","DOI":"10.1109\/CEC.2007.4424855"},{"key":"12_CR37","unstructured":"Li C, Yang S, Nguyen TT, Yu EL, Yao X, Jin Y, Beyer H-G, Suganthan PN (2009) Benchmark generator for CEC 2009 competition on dynamic optimization. In: IEEE conference on evolutionary computation. Special session competition on evolutionary computation in dynamic and uncertain environments. http:\/\/www3.ntu.edu.sg\/home\/EPNSugan\/index_files\/"},{"key":"12_CR38","doi-asserted-by":"crossref","unstructured":"Mendoza F, Bernal-Agustin JL, Domnguez-Navarro JA (2006) NSGA and SPEA applied to multi-objective design of power distribution systems. IEEE Trans Power Syst 21(4)","DOI":"10.1109\/TPWRS.2006.882469"},{"key":"12_CR39","unstructured":"Ramsey C, Grefensttete J (1993) Case-based initialization of genetic algorithms. In: Proceedings of the fifth international conference on genetic algorithms, pp 84\u201391"},{"key":"12_CR40","unstructured":"Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of 1st international conference on genetic algorithms, Pittsburgh, PA, pp 93\u2013100"},{"key":"12_CR41","doi-asserted-by":"crossref","unstructured":"Sharma D, Kumar A, Deb K, Sindhya K (2007) Hybridization of SBX based NSGA-II and sequential quadratic programming for solving multi-objective optimization problems. In: Proceedings of IEEE conference on evolutionary computation, 25\u201328 September 2007, Singapore","DOI":"10.1109\/CEC.2007.4424854"},{"key":"12_CR42","unstructured":"Suganthan PN (2007) Performance assessment on multi-objective optimization algorithms. IEEE conference on evolutionary computation special session, competition on performance assessment of multi-objective optimization algorithms. http:\/\/www3.ntu.edu.sg\/home\/EPNSugan\/index_files\/"},{"key":"12_CR43","unstructured":"Wang Y, Li B (2008) FH-MOEA: multi-objective evolutionary algorithm based-on fast hyper-volume contribution approach. J Univ Sci Technol China 38(7):802\u2013809 (special issue on information science for 50th Anniversary)"},{"key":"12_CR44","doi-asserted-by":"crossref","unstructured":"Wang Y, Li B (2009) Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment. In: Proceedings of IEEE congress on evolutionary computation (CEC 2009), pp 630\u2013637 (accepted)","DOI":"10.1109\/CEC.2009.4983004"},{"key":"12_CR45","unstructured":"Wang Y, Li B (2009) ED-DE: cooperative estimation of distribution based differential evolution for economic dispatch optimization of power system. Inf Sci (accepted)"},{"issue":"2","key":"12_CR46","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1162\/evco.2008.16.2.185","volume":"16","author":"EF Wanner","year":"2008","unstructured":"Wanner EF, Guimaraes FG, Takahashi RHC, Fleming PJ (2008) Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria. MIT Evol Comput 16(2): 185\u2013224","journal-title":"MIT Evol Comput"},{"issue":"1","key":"12_CR47","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1109\/TEVC.2005.851275","volume":"10","author":"L While","year":"2006","unstructured":"While L, Hingston P, Barone L, Huband S (2006) A faster algorithm for calculating hyper-volume. IEEE Trans Evol Comput 10(1): 29\u201338","journal-title":"IEEE Trans Evol Comput"},{"key":"12_CR48","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1145\/1068009.1068128","volume":"1","author":"S Yang","year":"2005","unstructured":"Yang S (2005) Population-based incremental learning with memory scheme for changing environments. Proc Genet Evol Comput Conf 1: 711\u2013718","journal-title":"Proc Genet Evol Comput Conf"},{"key":"12_CR49","doi-asserted-by":"crossref","unstructured":"Yang S (2007) Genetic algorithms with elitism-based immigrants for changing optimization problems. Applications of evolutionary computing. In: Lecture Notes in Computer Science, vol 4448. Springer, Berlin, pp 627\u2013636","DOI":"10.1007\/978-3-540-71805-5_69"},{"issue":"3","key":"12_CR50","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1007\/s11633-007-0243-9","volume":"4","author":"S Yang","year":"2007","unstructured":"Yang S, Tinos R (2007) A hybrid immigrants scheme for genetic algorithms in dynamic environments. Int J Autom Comput 4(3): 243\u2013254","journal-title":"Int J Autom Comput"},{"issue":"11","key":"12_CR51","doi-asserted-by":"crossref","first-page":"815","DOI":"10.1007\/s00500-004-0422-3","volume":"9","author":"S Yang","year":"2005","unstructured":"Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput 9(11): 815\u2013834","journal-title":"Soft Comput"},{"issue":"5","key":"12_CR52","doi-asserted-by":"crossref","first-page":"542","DOI":"10.1109\/TEVC.2007.913070","volume":"12","author":"S Yang","year":"2008","unstructured":"Yang S, Yao X (2008) Population-based incremental learning with associative memory for dynamic environments. IEEE Trans Evol Comput 12(5): 542\u2013561","journal-title":"IEEE Trans Evol Comput"},{"issue":"2","key":"12_CR53","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1109\/4235.771163","volume":"3","author":"X Yao","year":"1999","unstructured":"Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2): 82\u2013102","journal-title":"IEEE Trans Evol Comput"},{"issue":"1","key":"12_CR54","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s12293-008-0003-6","volume":"1","author":"X Yu","year":"2009","unstructured":"Yu X, Tang K, Chen TS, Yao X (2009) Empirical analysis of evolutionary algorithms with immigrants schemes for dynamic optimization. Memet Comput 1(1): 3\u201324","journal-title":"Memet Comput"},{"issue":"6","key":"12_CR55","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","volume":"11","author":"QF Zhang","year":"2007","unstructured":"Zhang QF, Li H (2007) MOEA\/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6): 712\u2013731","journal-title":"IEEE Trans Evol Comput"},{"issue":"1","key":"12_CR56","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1109\/TEVC.2007.894202","volume":"12","author":"QF Zhang","year":"2008","unstructured":"Zhang QF, Zhou AM, Jin YC (2008) RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans Evol Comput 12(1): 41\u201363","journal-title":"IEEE Trans Evol Comput"},{"key":"12_CR57","doi-asserted-by":"crossref","unstructured":"Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms\u2014a comparative study. In: Proceedings of parallel problem solving from nature V. Springer, Amsterdam, pp 292\u2013301","DOI":"10.1007\/BFb0056872"},{"issue":"2","key":"12_CR58","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1162\/106365600568202","volume":"8","author":"E Zitzler","year":"2000","unstructured":"Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2): 173\u2013195","journal-title":"Evol Comput"},{"key":"12_CR59","unstructured":"Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, Tech Rep 103"},{"issue":"2","key":"12_CR60","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1109\/TEVC.2003.810758","volume":"7","author":"E Zitzler","year":"2003","unstructured":"Zitzler E, Thiele L, Laumanns M, Fonseca CM, Grunertda Fonseca V (2003) Performance assesment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2): 117\u2013132","journal-title":"IEEE Trans Evol Comput"}],"container-title":["Memetic Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12293-009-0012-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s12293-009-0012-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12293-009-0012-0","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,26]],"date-time":"2023-05-26T14:53:38Z","timestamp":1685112818000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s12293-009-0012-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2009,9,1]]},"references-count":60,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2010,3]]}},"alternative-id":["12"],"URL":"https:\/\/doi.org\/10.1007\/s12293-009-0012-0","relation":{},"ISSN":["1865-9284","1865-9292"],"issn-type":[{"value":"1865-9284","type":"print"},{"value":"1865-9292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2009,9,1]]}}}