{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T22:43:31Z","timestamp":1725662611085},"reference-count":26,"publisher":"Springer Science and Business Media LLC","license":[{"start":{"date-parts":[[2022,2,12]],"date-time":"2022-02-12T00:00:00Z","timestamp":1644624000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,2,12]],"date-time":"2022-02-12T00:00:00Z","timestamp":1644624000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002322","name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004586","name":"Funda\u00e7\u00e3o Carlos Chagas Filho de Amparo \u00e0 Pesquisa do Estado do Rio de Janeiro","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004586","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001807","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","doi-asserted-by":"publisher","award":["2018\/23062-5"],"id":[{"id":"10.13039\/501100001807","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100017580","name":"Rede Nacional de Ensino e Pesquisa","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100017580","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Ann. Telecommun."],"DOI":"10.1007\/s12243-021-00904-5","type":"journal-article","created":{"date-parts":[[2022,2,12]],"date-time":"2022-02-12T22:02:10Z","timestamp":1644703330000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":12,"title":["A statistical analysis of intrinsic bias of network security datasets for training machine learning mechanisms"],"prefix":"10.1007","author":[{"given":"Jo\u00e3o Vitor V.","family":"Silva","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2034-6899","authenticated-orcid":false,"given":"Nicollas R.","family":"de Oliveira","sequence":"additional","affiliation":[]},{"given":"Dianne S. V.","family":"Medeiros","sequence":"additional","affiliation":[]},{"given":"Martin Andreoni","family":"Lopez","sequence":"additional","affiliation":[]},{"given":"Diogo M. F.","family":"Mattos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,2,12]]},"reference":[{"issue":"11","key":"904_CR1","doi-asserted-by":"publisher","first-page":"595","DOI":"10.1007\/s12243-016-0506-y","volume":"71","author":"MA Lopez","year":"2016","unstructured":"Lopez MA, Ferrazani Mattos DM, Duarte OCMB (2016) An elastic intrusion detection system for software networks. Ann Telecommun 71(11):595\u2013605","journal-title":"Ann Telecommun"},{"issue":"3","key":"904_CR2","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1007\/s12243-018-0663-2","volume":"74","author":"M Andreoni Lopez","year":"2019","unstructured":"Andreoni Lopez M, Mattos DMF, Duarte OCMB, Pujolle G (2019) A fast unsupervised preprocessing method for network monitoring. Ann Telecommun 74(3):139\u2013155","journal-title":"Ann Telecommun"},{"issue":"20","key":"904_CR3","doi-asserted-by":"publisher","first-page":"e5344","DOI":"10.1002\/cpe.5344","volume":"31","author":"M Andreoni Lopez","year":"2019","unstructured":"Andreoni Lopez M, Mattos DMF, Duarte OCMB, Pujolle G (2019) Toward a monitoring and threat detection system based on stream processing as a virtual network function for big data. Concurrency Comput Pract Exp 31(20):e5344","journal-title":"Concurrency Comput Pract Exp"},{"key":"904_CR4","doi-asserted-by":"crossref","unstructured":"Mattos D. M. F., Ferraz L. H. G, Costa L. H. M. K., Duarte O. C. M. B. (2012) Evaluating virtual router performance for a pluralist future internet. In: Proceedings of the 3rd International Conference on Information and Communication Systems, ser. ICICS\u201912 Irbid. Association for Computing Machinery, Jordan","DOI":"10.1145\/2222444.2222448"},{"key":"904_CR5","unstructured":"Cic ids dataset, accessed: 2020-03-22"},{"key":"904_CR6","unstructured":"Unsw-nb15 dataset, accessed: 2021-01-26"},{"key":"904_CR7","unstructured":"Cic botnet 2014 dataset, accessed: 2020-04-02"},{"key":"904_CR8","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1016\/j.jnca.2012.09.004","volume":"36","author":"H-J Liao","year":"2013","unstructured":"Liao H-J, Lin C-HR, Lin Y-C, Tung K-Y (2013) Intrusion detection system: a comprehensive review. J Netw Comput Appl 36:16\u201324","journal-title":"J Netw Comput Appl"},{"key":"904_CR9","doi-asserted-by":"crossref","unstructured":"Mrutyunjaya Panda MRP, Abrahamb A (2012) A hybrid intelligent approach for network intrusion detection, vol. 30 Elsevier","DOI":"10.1016\/j.proeng.2012.01.827"},{"key":"904_CR10","doi-asserted-by":"crossref","unstructured":"Wathiq Laftah Al-Yaseen MZAN, Othman ZA (2017) Multi-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection system Expert Systems With Applications","DOI":"10.1016\/j.eswa.2016.09.041"},{"key":"904_CR11","doi-asserted-by":"crossref","unstructured":"Sanz IJ, Mattos DMF, Duarte OCMB (2018) Sfcperf: An automatic performance evaluation framework for service function chaining. In: NOMS 2018 - 2018 IEEE\/IFIP Network Operations and Management Symposium 1\u20139","DOI":"10.1109\/NOMS.2018.8406237"},{"key":"904_CR12","doi-asserted-by":"crossref","unstructured":"Depren O, Topallar M, Anarim E, Ciliz MK (2005) An intelligent intrusion detection system (ids) for anomaly and misuse detection in computer networks, vol. 29 Elsevier, 713\u2013722","DOI":"10.1016\/j.eswa.2005.05.002"},{"key":"904_CR13","unstructured":"1998 darpa intrusion detection evaluation dataset, accessed: 2020-04-02"},{"key":"904_CR14","unstructured":"Kdd cup 1999 data, accessed: 2020-02-22"},{"key":"904_CR15","doi-asserted-by":"crossref","unstructured":"Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the kdd cup 99 data set IEEE","DOI":"10.1109\/CISDA.2009.5356528"},{"key":"904_CR16","doi-asserted-by":"crossref","unstructured":"Moustafa N, Slay J (2015) Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 military communications and information systems conference (milCIS). IEEE, 1\u20136","DOI":"10.1109\/MilCIS.2015.7348942"},{"key":"904_CR17","doi-asserted-by":"crossref","unstructured":"Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSp, pp 108\u2013116","DOI":"10.5220\/0006639801080116"},{"key":"904_CR18","doi-asserted-by":"crossref","unstructured":"Biglar Beigi E, Hadian Jazi H, Stakhanova N, Ghorbani AA (2014) Towards effective feature selection in machine learning-based botnet detection approaches. In: 2014 IEEE Conference on Communications and Network Security, pp 247\u2013255","DOI":"10.1109\/CNS.2014.6997492"},{"issue":"1","key":"904_CR19","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1186\/s13174-018-0087-2","volume":"9","author":"R Boutaba","year":"2018","unstructured":"Boutaba R, Salahuddin MA, Limam N, Ayoubi S, Shahriar N, Estrada-Solano F, Caicedo OM (2018) A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. Journal of Internet Services and Applications 9(1):16","journal-title":"Journal of Internet Services and Applications"},{"key":"904_CR20","first-page":"83","volume":"27","author":"T Hastie","year":"2004","unstructured":"Hastie T, Tibshirani R, Friedman J, Franklin J (2004) The elements of statistical learning: Data mining, inference, and prediction. Math Intell 27:83\u201385, 11","journal-title":"Math Intell"},{"issue":"1","key":"904_CR21","first-page":"321","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: Synthetic minority over-sampling technique. J Artif Int Res 16(1):321\u2013357","journal-title":"J Artif Int Res"},{"issue":"1","key":"904_CR22","doi-asserted-by":"publisher","first-page":"13","DOI":"10.20982\/tqmp.04.1.p013","volume":"4","author":"N Nachar","year":"2008","unstructured":"Nachar N, et al. (2008) The mann-whitney u: a test for assessing whether two independent samples come from the same distribution. Tutorials in quantitative Methods for Psychology 4(1):13\u201320","journal-title":"Tutorials in quantitative Methods for Psychology"},{"key":"904_CR23","unstructured":"Olusola DOA, Adetunmbi A., Adeola S (2010) Oladele, Analysis of kdd \u201999\u2019 intrusion detection dataset for selection of relevance features, vol. 1"},{"key":"904_CR24","doi-asserted-by":"crossref","unstructured":"Mohammad khubeb siddiqui SN (2013) Analysis of kdd cup 99 dataset using clustering base data mining. 45:23\u201334","DOI":"10.14257\/ijdta.2013.6.5.03"},{"key":"904_CR25","first-page":"2278","volume":"4","author":"BPM Al Mehedi Hasan","year":"2013","unstructured":"Al Mehedi Hasan BPM, Mohammed N (2013) On kdd\u201999 dataset: Support vector machine based intrusion detection system (ids) with different kernels. Int J Electron Commun Comput Eng 4:2278\u20134209","journal-title":"Int J Electron Commun Comput Eng"},{"key":"904_CR26","doi-asserted-by":"crossref","unstructured":"Hasan MAM, Nasser M, Pal B, Ahmad S (2014) Support vector machine and random forest modeling for intrusion detection system (ids). 6:45\u201352","DOI":"10.4236\/jilsa.2014.61005"}],"container-title":["Annals of Telecommunications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12243-021-00904-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12243-021-00904-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12243-021-00904-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,2,12]],"date-time":"2022-02-12T22:02:28Z","timestamp":1644703348000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12243-021-00904-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2,12]]},"references-count":26,"alternative-id":["904"],"URL":"https:\/\/doi.org\/10.1007\/s12243-021-00904-5","relation":{},"ISSN":["0003-4347","1958-9395"],"issn-type":[{"value":"0003-4347","type":"print"},{"value":"1958-9395","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,2,12]]},"assertion":[{"value":"4 May 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 December 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 February 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}