{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T18:49:36Z","timestamp":1724352576367},"reference-count":39,"publisher":"Springer Science and Business Media LLC","issue":"3-4","license":[{"start":{"date-parts":[[2018,8,31]],"date-time":"2018-08-31T00:00:00Z","timestamp":1535673600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Ann. Telecommun."],"published-print":{"date-parts":[[2019,4]]},"DOI":"10.1007\/s12243-018-0663-2","type":"journal-article","created":{"date-parts":[[2018,8,31]],"date-time":"2018-08-31T13:26:27Z","timestamp":1535721987000},"page":"139-155","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":29,"title":["A fast unsupervised preprocessing method for network monitoring"],"prefix":"10.1007","volume":"74","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4170-4341","authenticated-orcid":false,"given":"Martin","family":"Andreoni Lopez","sequence":"first","affiliation":[]},{"given":"Diogo M. F.","family":"Mattos","sequence":"additional","affiliation":[]},{"given":"Otto Carlos M. B.","family":"Duarte","sequence":"additional","affiliation":[]},{"given":"Guy","family":"Pujolle","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,8,31]]},"reference":[{"key":"663_CR1","doi-asserted-by":"crossref","unstructured":"Hu P, Li H, Fu H, Cansever D, Mohapatra P (2015) Dynamic defense strategy against advanced persistent threat with insiders. In: IEEE conference on computer communications (INFOCOM), vol 4, pp 747\u2013755","DOI":"10.1109\/INFOCOM.2015.7218444"},{"issue":"11","key":"663_CR2","doi-asserted-by":"publisher","first-page":"595","DOI":"10.1007\/s12243-016-0506-y","volume":"71","author":"M Andreoni Lopez","year":"2016","unstructured":"Andreoni Lopez M, Ferrazani Mattos DM, Duarte OCMB (2016) An elastic intrusion detection system for software networks. Ann Telecommun 71(11):595\u2013605. \n https:\/\/doi.org\/10.1007\/s12243-016-0506-y","journal-title":"Ann Telecommun"},{"issue":"11","key":"663_CR3","doi-asserted-by":"publisher","first-page":"607","DOI":"10.1007\/s12243-016-0505-z","volume":"71","author":"DM Ferrazani Mattos","year":"2016","unstructured":"Ferrazani Mattos DM, Duarte OCMB (2016) AuthFlow: authentication and access control mechanism for software defined networking. Ann Telecommun 71(11):607\u2013615. \n https:\/\/doi.org\/10.1007\/s12243-016-0505-z","journal-title":"Ann Telecommun"},{"issue":"23\u201324","key":"663_CR4","doi-asserted-by":"publisher","first-page":"2435","DOI":"10.1016\/S1389-1286(99)00112-7","volume":"31","author":"V Paxson","year":"1999","unstructured":"Paxson V (1999) Bro: a system for detecting network intruders in real-time. Comput Netw 31(23\u201324):2435\u20132463","journal-title":"Comput Netw"},{"key":"663_CR5","unstructured":"Roesch M (1999) Snort-lightweight intrusion detection for networks. In: Proceedings of the 13th USENIX Conference on System Administration. USENIX Association, pp 229\u2013238"},{"key":"663_CR6","doi-asserted-by":"crossref","unstructured":"Vallentin M, Sommer R, Lee J, Leres C, Paxson V, Tierney B (2007) The NIDS cluster: scalable, stateful network intrusion detection on commodity hardware. In: Recent advances in intrusion detection. Springer, Berlin, pp 107\u2013126","DOI":"10.1007\/978-3-540-74320-0_6"},{"key":"663_CR7","unstructured":"Bar A, Finamore A, Casas P, Golab l., Mellia M (2014) Large-scale network traffic monitoring with DBStream, a system for rolling big data analysis. In: 2014 IEEE International Conference on Big Data (Big Data). IEEE, vol 10, pp 165\u2013170"},{"issue":"4","key":"663_CR8","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1145\/1107499.1107504","volume":"34","author":"M Stonebraker","year":"2005","unstructured":"Stonebraker M, \u00c7etintemel U, Zdonik S (2005) The 8 requirements of real-time stream processing. ACM SIGMOD Rec 34(4):42\u201347","journal-title":"ACM SIGMOD Rec"},{"key":"663_CR9","unstructured":"Mayhew M, Atighetchi M, Adler A, Greenstadt R (2015) Use of machine learning in big data analytics for insider threat detection. In: IEEE Military Communications Conference. MILCOM, vol 10, pp 915\u2013922"},{"key":"663_CR10","doi-asserted-by":"crossref","unstructured":"Mladeni\u0107 D (2006) Feature selection for dimensionality reduction. In: Saunders C, Grobelnik M, Gunn S, Shawe-Taylor J (eds) Subspace, latent structure and feature selection (slsfs): statistical and optimization perspectives workshop, pp 84\u2013102. Springer, Bohinj","DOI":"10.1007\/11752790_5"},{"key":"663_CR11","doi-asserted-by":"crossref","unstructured":"Bifet A, Morales GDF (2014) Big data stream learning with Samoa. In: 2014 IEEE International Conference on Data Mining Workshop, pp 1199\u20131202","DOI":"10.1109\/ICDMW.2014.24"},{"issue":"1","key":"663_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s12530-016-9168-2","volume":"9","author":"I Khamassi","year":"2018","unstructured":"Khamassi I, Sayed-Mouchaweh M, Hammami M, Gh\u00e9dira K (2018) Discussion and review on evolving data streams and concept drift adapting. Evol Syst 9(1):1\u201323","journal-title":"Evol Syst"},{"issue":"4","key":"663_CR13","first-page":"3","volume":"23","author":"E Rahm","year":"2000","unstructured":"Rahm E, Do HH (2000) Data cleaning: problems and current approaches. IEEE Bullet Tech Comm Data Eng 23(4):3\u201313","journal-title":"IEEE Bullet Tech Comm Data Eng"},{"key":"663_CR14","volume-title":"Data preprocessing in data mining","author":"S Garc\u00eda","year":"2016","unstructured":"Garc\u00eda S, Luengo J, Herrera F (2016) Data preprocessing in data mining. Springer, Berlin"},{"issue":"1\/2","key":"663_CR15","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1023\/A:1025667309714","volume":"53","author":"M Robnik-\u0160ikonja","year":"2003","unstructured":"Robnik-\u0160ikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1\/2):23\u2013 69","journal-title":"Mach Learn"},{"key":"663_CR16","unstructured":"Sch\u00f6lkopf B, Smola AJ, M\u00fcller K-R (1999) Kernel principal component analysis. In: Advances in kernel methods. MIT Press, Cambridge, pp 327\u2013352"},{"key":"663_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.knosys.2015.12.006","volume":"98","author":"S Garc\u00eda","year":"2016","unstructured":"Garc\u00eda S, Luengo J, Herrera F (2016) Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowl-Based Syst 98:1\u201329. [Online]. Available: \n http:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705115004785","journal-title":"Knowl-Based Syst"},{"issue":"5\u20136","key":"663_CR18","doi-asserted-by":"publisher","first-page":"375","DOI":"10.1080\/713827180","volume":"17","author":"S Zhang","year":"2003","unstructured":"Zhang S, Zhang C, Yang Q (2003) Data preparation for data mining. Appl Artif Intell 17(5\u20136):375\u2013381","journal-title":"Appl Artif Intell"},{"issue":"4","key":"663_CR19","doi-asserted-by":"publisher","first-page":"667","DOI":"10.1016\/j.eswa.2004.12.023","volume":"28","author":"S Tan","year":"2005","unstructured":"Tan S (2005) Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert Syst Appl 28(4):667\u2013671","journal-title":"Expert Syst Appl"},{"key":"663_CR20","doi-asserted-by":"crossref","unstructured":"Ram\u00e9rez-Gallego S, Krawczyk B, Garc\u00eda S, Wo\u017aniak M, Herrera F (2017) A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing","DOI":"10.1016\/j.neucom.2017.01.078"},{"key":"663_CR21","first-page":"66","volume":"10","author":"L Van Der Maaten","year":"2009","unstructured":"Van Der Maaten L, Postma E, den Herik J (2009) Dimensionality reduction: a comparative. J Mach Learn Res 10:66\u201371","journal-title":"J Mach Learn Res"},{"issue":"5","key":"663_CR22","doi-asserted-by":"publisher","first-page":"971","DOI":"10.1109\/TCBB.2015.2478454","volume":"13","author":"JC Ang","year":"2016","unstructured":"Ang JC, Mirzal A, Haron H, Hamed HNA (2016) Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE\/ACM Trans Comput Biol Bioinform 13(5):971\u2013989","journal-title":"IEEE\/ACM Trans Comput Biol Bioinform"},{"issue":"1","key":"663_CR23","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1016\/j.compeleceng.2013.11.024","volume":"40","author":"G Chandrashekar","year":"2014","unstructured":"Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16\u201328","journal-title":"Comput Electr Eng"},{"issue":"1-3","key":"663_CR24","doi-asserted-by":"publisher","first-page":"389","DOI":"10.1023\/A:1012487302797","volume":"46","author":"I Guyon","year":"2002","unstructured":"Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1-3):389\u2013422","journal-title":"Mach Learn"},{"key":"663_CR25","unstructured":"Hall MA (1999) Correlation-based feature selection for machine learning. Ph.D. dissertation, The University of Waikato"},{"key":"663_CR26","unstructured":"Kumar A, Sung M, Xu JJ, Wang J (2004) Data streaming algorithms for efficient and accurate estimation of flow size distribution. In: ACM SIGMETRICS performance evaluation review. ACM, vol 132, no. 1, pp 177-188"},{"key":"663_CR27","first-page":"849","volume":"11","author":"Y Ben-Haim","year":"2010","unstructured":"Ben-Haim Y, Tom-tov E (2010) A streaming parallel decision tree algorithm. J Mach Learn Res 11:849\u2013872","journal-title":"J Mach Learn Res"},{"key":"663_CR28","doi-asserted-by":"crossref","unstructured":"Webb GI (2014) Contrary to popular belief incremental discretization can be sound, computationally efficient and extremely useful for streaming data. In: IEEE International Conference on Data Mining (ICDM). IEEE, pp 1031\u20131036","DOI":"10.1109\/ICDM.2014.123"},{"key":"663_CR29","doi-asserted-by":"crossref","unstructured":"Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the KDD CUP 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp 1\u20136","DOI":"10.1109\/CISDA.2009.5356528"},{"key":"663_CR30","doi-asserted-by":"crossref","unstructured":"Lobato A, Andreoni Lopez M, Sanz IJ, C\u00e1rdenas A, Duarte OCMB, Pujolle G (2018) An adaptive real-time architecture for zero-day threat detection. In: IEEE ICC 2018 Next Generation Networking and Internet Symposium (ICC\u201918 NGNI), Kansas City, USA","DOI":"10.1109\/ICC.2018.8422622"},{"key":"663_CR31","unstructured":"Andreoni Lopez M, Silva RS, Alvarenga ID, Rebello GAF, Sanz IJ, Lobato AGP, Mattos DMF, Duarte OCMB, Pujolle G (2017) Collecting and characterizing a real broadband access network traffic dataset. In: IEEE\/IFIP 1st Cyber Security in Networking Conference (CSNet), pp 1\u20138"},{"key":"663_CR32","doi-asserted-by":"crossref","unstructured":"Hu H, Kantardzic M (2016) Smart preprocessing improves data stream mining. In: 49th Hawaii International Conference on System Sciences (HICSS). IEEE, pp 1749\u20131757","DOI":"10.1109\/HICSS.2016.220"},{"issue":"2","key":"663_CR33","doi-asserted-by":"publisher","first-page":"1153","DOI":"10.1109\/COMST.2015.2494502","volume":"18","author":"AL Buczak","year":"2016","unstructured":"Buczak AL, Guven E (2016) A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun Surv Tutorials 18(2):1153\u20131176. \n https:\/\/doi.org\/10.1109\/COMST.2015.2494502","journal-title":"IEEE Commun Surv Tutorials"},{"key":"663_CR34","unstructured":"Prasath VBS, Alfeilat HAA, Lasassmeh O, Hassanat ABA Distance and similarity measures effect on the performance of k-nearest neighbor classifier - a review, CoRR. [Online]. arXiv:\n 1708.04321"},{"key":"663_CR35","doi-asserted-by":"crossref","unstructured":"Zhang T (2004) Solving large scale linear prediction problems using stochastic gradient descent algorithms. In: Proceedings of the Twenty-First International Conference on Machine Learning. ACM, pp 116","DOI":"10.1145\/1015330.1015332"},{"key":"663_CR36","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321\u2013357","journal-title":"J Artif Intell Res"},{"key":"663_CR37","unstructured":"Perkins S, Theiler J (2003) Online feature selection using grafting. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp 592\u2013599"},{"issue":"Sep","key":"663_CR38","first-page":"1861","volume":"7","author":"J Zhou","year":"2006","unstructured":"Zhou J, Foster DP, Stine RA, Ungar LH (2006) Streamwise feature selection. J Mach Learn Res 7 (Sep):1861\u20131885","journal-title":"J Mach Learn Res"},{"issue":"5","key":"663_CR39","doi-asserted-by":"publisher","first-page":"1178","DOI":"10.1109\/TPAMI.2012.197","volume":"35","author":"X Wu","year":"2013","unstructured":"Wu X, Yu K, Ding W, Wang H, Zhu X (2013) Online feature selection with streaming features. IEEE Trans Pattern Anal Mach Intell 35(5):1178\u20131192","journal-title":"IEEE Trans Pattern Anal Mach Intell"}],"container-title":["Annals of Telecommunications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12243-018-0663-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s12243-018-0663-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12243-018-0663-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,31]],"date-time":"2019-08-31T10:29:05Z","timestamp":1567247345000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s12243-018-0663-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,8,31]]},"references-count":39,"journal-issue":{"issue":"3-4","published-print":{"date-parts":[[2019,4]]}},"alternative-id":["663"],"URL":"https:\/\/doi.org\/10.1007\/s12243-018-0663-2","relation":{},"ISSN":["0003-4347","1958-9395"],"issn-type":[{"value":"0003-4347","type":"print"},{"value":"1958-9395","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,8,31]]},"assertion":[{"value":"5 June 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 August 2018","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"31 August 2018","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}