{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T09:40:20Z","timestamp":1732095620095,"version":"3.28.0"},"reference-count":166,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T00:00:00Z","timestamp":1727049600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T00:00:00Z","timestamp":1727049600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/100023581","name":"National Science Foundation Graduate Research Fellowship Program","doi-asserted-by":"publisher","award":["DGE1745303"],"id":[{"id":"10.13039\/100023581","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000070","name":"National Institute of Biomedical Imaging and Bioengineering","doi-asserted-by":"publisher","award":["5T32EB001680","NAC P41EB015902","P41EB015903","UG3EB034875","UG3EB034875","P41EB030006","P41EB030006","P41EB030006","5T32EB001680","5T32EB001680"],"id":[{"id":"10.13039\/100000070","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100023835","name":"BRAIN Initiative","doi-asserted-by":"publisher","award":["1U01EB029826","U19NS123717"],"id":[{"id":"10.13039\/100023835","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Department of Physics Fellowship, Massachusetts Institute of Technology"},{"DOI":"10.13039\/100000065","name":"National Institute of Neurological Disorders and Stroke","doi-asserted-by":"publisher","award":["U19NS115388","UM1 NS132358","U19NS128613","U01NS132181","R01NS119911","R01NS118187"],"id":[{"id":"10.13039\/100000065","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007723","name":"Takeda Pharmaceuticals U.S.A.","doi-asserted-by":"publisher","award":["Graduate Fellowship"],"id":[{"id":"10.13039\/100007723","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000052","name":"NIH Office of the Director","doi-asserted-by":"publisher","award":["DP2HD101400","S10OD028668"],"id":[{"id":"10.13039\/100000052","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000025","name":"National Institute of Mental Health","doi-asserted-by":"publisher","award":["RF1 MH114276","R01MH128421","R01MH111419","P50MH106435","R01MH134144"],"id":[{"id":"10.13039\/100000025","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001674","name":"Fondation Leducq","doi-asserted-by":"publisher","award":["22CVD0"],"id":[{"id":"10.13039\/501100001674","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000049","name":"National Institute on Aging","doi-asserted-by":"publisher","award":["K01AG070318","R01AG070135","R21AG078985","R21AG067562"],"id":[{"id":"10.13039\/100000049","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100008460","name":"National Center for Complementary and Integrative Health","doi-asserted-by":"publisher","award":["R01AT011429"],"id":[{"id":"10.13039\/100008460","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000893","name":"Simons Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000893","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000879","name":"Alfred P. Sloan Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000879","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Pew Scholars Program in Biomedical Sciences"},{"DOI":"10.13039\/100000053","name":"National Eye Institute","doi-asserted-by":"publisher","award":["R01EY030434"],"id":[{"id":"10.13039\/100000053","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000055","name":"National Institute on Deafness and Other Communication Disorders","doi-asserted-by":"publisher","award":["R01DC020891"],"id":[{"id":"10.13039\/100000055","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100009633","name":"Eunice Kennedy Shriver National Institute of Child Health and Human Development","doi-asserted-by":"publisher","award":["R21HD106038"],"id":[{"id":"10.13039\/100009633","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100006919","name":"Massachusetts Institute of Technology","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100006919","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neuroinform"],"abstract":"Abstract<\/jats:title>Advances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research. \u201cMesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging\u201d brought together researchers who use a broad range of imaging techniques to study brain structure and function at the convergence of the microscopic and macroscopic scales. The day-long event centered on areas in which the CMM has established expertise, including the development of emerging technologies and their application to clinical translational needs and basic neuroscience questions. The in-person symposium welcomed more than 150 attendees, including 57 faculty members, 61 postdoctoral fellows, 35 students, and four industry professionals, who represented institutions at the local, regional, and international levels. The symposium also served the training goals of both the CMM and the NTP. The event content, organization, and format were planned collaboratively by the faculty and trainees. Many CMM faculty presented or participated in a panel discussion, thus contributing to the dissemination of both the technologies they have developed under the auspices of the CMM and the findings they have obtained using those technologies. NTP trainees who benefited from the symposium included those who helped to organize the symposium and\/or presented posters and gave \u201cflash\u201d oral presentations. In addition to gaining experience from presenting their work, they had opportunities throughout the day to engage in one-on-one discussions with visiting scientists and other faculty, potentially opening the door to future collaborations. The symposium presentations provided a deep exploration of the many technological advances enabling progress in structural and functional mesoscale brain imaging. Finally, students worked closely with the presenting faculty to develop this report summarizing the content of the symposium and putting it in the broader context of the current state of the field to share with the scientific community. We note that the references cited here include conference abstracts corresponding to the symposium poster presentations.<\/jats:p>","DOI":"10.1007\/s12021-024-09686-2","type":"journal-article","created":{"date-parts":[[2024,9,24]],"date-time":"2024-09-24T13:24:33Z","timestamp":1727184273000},"page":"679-706","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging \u2013 A Symposium Review"],"prefix":"10.1007","volume":"22","author":[{"given":"Joshua K.","family":"Marchant","sequence":"first","affiliation":[]},{"given":"Natalie G.","family":"Ferris","sequence":"additional","affiliation":[]},{"given":"Diana","family":"Grass","sequence":"additional","affiliation":[]},{"given":"Magdelena S.","family":"Allen","sequence":"additional","affiliation":[]},{"given":"Vivek","family":"Gopalakrishnan","sequence":"additional","affiliation":[]},{"given":"Mark","family":"Olchanyi","sequence":"additional","affiliation":[]},{"given":"Devang","family":"Sehgal","sequence":"additional","affiliation":[]},{"given":"Maxina","family":"Sheft","sequence":"additional","affiliation":[]},{"given":"Amelia","family":"Strom","sequence":"additional","affiliation":[]},{"given":"Berkin","family":"Bilgic","sequence":"additional","affiliation":[]},{"given":"Brian","family":"Edlow","sequence":"additional","affiliation":[]},{"given":"Elizabeth M. C.","family":"Hillman","sequence":"additional","affiliation":[]},{"given":"Meher R.","family":"Juttukonda","sequence":"additional","affiliation":[]},{"given":"Laura","family":"Lewis","sequence":"additional","affiliation":[]},{"given":"Shahin","family":"Nasr","sequence":"additional","affiliation":[]},{"given":"Aapo","family":"Nummenmaa","sequence":"additional","affiliation":[]},{"given":"Jonathan R.","family":"Polimeni","sequence":"additional","affiliation":[]},{"given":"Roger B. H.","family":"Tootell","sequence":"additional","affiliation":[]},{"given":"Lawrence L.","family":"Wald","sequence":"additional","affiliation":[]},{"given":"Hui","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Anastasia","family":"Yendiki","sequence":"additional","affiliation":[]},{"given":"Susie Y.","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Bruce R.","family":"Rosen","sequence":"additional","affiliation":[]},{"given":"Randy L.","family":"Gollub","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,23]]},"reference":[{"issue":"1","key":"9686_CR1","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/j.cpet.2023.08.001","volume":"19","author":"MS Allen","year":"2024","unstructured":"Allen, M. S., Scipioni, M., & Catana, C. (2024). New Horizons in Brain PET Instrumentation. PET Clinics, 19(1), 25\u201336. https:\/\/doi.org\/10.1016\/j.cpet.2023.08.001","journal-title":"PET Clinics"},{"key":"9686_CR2","doi-asserted-by":"publisher","unstructured":"Bailes, S. M., Gomez, D. E. P., Setzer, B., & Lewis, L. D. (2023). Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. bioRxiv. https:\/\/doi.org\/10.1101\/2023.01.25.525528","DOI":"10.1101\/2023.01.25.525528"},{"issue":"9","key":"9686_CR3","doi-asserted-by":"publisher","first-page":"785","DOI":"10.4329\/wjr.v8.i9.785","volume":"8","author":"V Baliyan","year":"2016","unstructured":"Baliyan, V., Das, C. J., Sharma, R., & Gupta, A. K. (2016). Diffusion weighted imaging: Technique and applications. World Journal of Radiology, 8(9), 785\u2013798. https:\/\/doi.org\/10.4329\/wjr.v8.i9.785","journal-title":"World Journal of Radiology"},{"issue":"2","key":"9686_CR4","doi-asserted-by":"publisher","first-page":"390","DOI":"10.1002\/mrm.1910250220","volume":"25","author":"PA Bandettini","year":"1992","unstructured":"Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25(2), 390\u2013397. https:\/\/doi.org\/10.1002\/mrm.1910250220","journal-title":"Magnetic Resonance in Medicine"},{"key":"9686_CR5","unstructured":"Bian, W., Jang, A., & Liu, F. (2023). Diffusion modeling with domain-conditioned prior guidance for accelerated MRI and qMRI reconstruction. Pre-print. https:\/\/arxiv.org\/abs\/2309.00783. Accessed\u00a029 Jan 2024"},{"issue":"6","key":"9686_CR6","doi-asserted-by":"publisher","first-page":"2152","DOI":"10.1002\/mrm.25347","volume":"73","author":"B Bilgic","year":"2015","unstructured":"Bilgic, B., Gagoski, B. A., Cauley, S. F., Fan, A. P., Polimeni, J. R., Grant, P. E., Wald, L. L., & Setsompop, K. (2015). Wave-CAIPI for highly accelerated 3D imaging. Magnetic Resonance in Medicine, 73(6), 2152\u20132162. https:\/\/doi.org\/10.1002\/mrm.25347","journal-title":"Magnetic Resonance in Medicine"},{"issue":"4","key":"9686_CR7","doi-asserted-by":"publisher","first-page":"1343","DOI":"10.1002\/mrm.27813","volume":"82","author":"B Bilgic","year":"2019","unstructured":"Bilgic, B., Chatnuntawech, I., Manhard, M. K., Tian, Q., Liao, C., Iyer, S. S., Cauley, S. F., Huang, S. Y., Polimeni, J. R., Wald, L. L., & Setsompop, K. (2019). Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction. Magnetic Resonance in Medicine, 82(4), 1343\u20131358. https:\/\/doi.org\/10.1002\/mrm.27813","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1","key":"9686_CR8","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1002\/mrm.10693","volume":"51","author":"J Bodurka","year":"2004","unstructured":"Bodurka, J., Ledden, P. J., van Gelderen, P., Chu, R., de Zwart, J. A., Morris, D., & Duyn, J. H. (2004). Scalable multichannel MRI data acquisition system. Magnetic Resonance in Medicine., 51(1), 165\u2013167. https:\/\/doi.org\/10.1002\/mrm.10693","journal-title":"Magnetic Resonance in Medicine."},{"key":"9686_CR9","doi-asserted-by":"publisher","first-page":"e71186","DOI":"10.7554\/eLife.71186","volume":"11","author":"S Bollmann","year":"2022","unstructured":"Bollmann, S., Mattern, H., Bernier, M., Robinson, S. D., Park, D., Speck, O., & Polimeni, J. R. (2022). Imaging of the pial arterial vasculature of the human brain in vivo using high-resolution 7T time-of-flight angiography. eLife, 11, e71186. https:\/\/doi.org\/10.7554\/eLife.71186","journal-title":"eLife"},{"key":"9686_CR10","doi-asserted-by":"publisher","unstructured":"Boubela, R., Kalcher, K., Huf, W., Kronnerwetter, C., Filzmoser, P., & Moser, E. (2013). Beyond noise: using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest [Original Research]. Frontiers in Human Neuroscience, 7. https:\/\/doi.org\/10.3389\/fnhum.2013.00168","DOI":"10.3389\/fnhum.2013.00168"},{"issue":"2","key":"9686_CR11","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1038\/nphoton.2014.323","volume":"9","author":"MB Bouchard","year":"2015","unstructured":"Bouchard, M. B., Voleti, V., Mendes, C. S., Lacefield, C., Grueber, W. B., Mann, R. S., Bruno, R. M., & Hillman, E. M. C. (2015). Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Nature Photonics, 9(2), 113\u2013119. https:\/\/doi.org\/10.1038\/nphoton.2014.323","journal-title":"Nature Photonics"},{"issue":"4","key":"9686_CR12","doi-asserted-by":"publisher","first-page":"555","DOI":"10.1002\/mrm.1910340412","volume":"34","author":"JL Boxerman","year":"1995","unstructured":"Boxerman, J. L., Hamberg, L. M., Rosen, B. R., & Weisskoff, R. M. (1995). Mr contrast due to intravascular magnetic susceptibility perturbations. Magnetic Resonance in Medicine, 34(4), 555\u2013566. https:\/\/doi.org\/10.1002\/mrm.1910340412","journal-title":"Magnetic Resonance in Medicine"},{"issue":"3","key":"9686_CR13","doi-asserted-by":"publisher","first-page":"617","DOI":"10.1007\/s10334-016-0561-4","volume":"29","author":"TF Budinger","year":"2016","unstructured":"Budinger, T. F., Bird, M. D., Frydman, L., Long, J. R., Mareci, T. H., Rooney, W. D., Rosen, B., Schenck, J. F., Schepkin, V. D., Sherry, A. D., Sodickson, D. K., Springer, C. S., Thulborn, K. R., U\u011furbil, K., & Wald, L. L. (2016). Toward 20 T magnetic resonance for human brain studies: Opportunities for discovery and neuroscience rationale. Magnetic Resonance Materials in Physics, Biology and Medicine, 29(3), 617\u2013639. https:\/\/doi.org\/10.1007\/s10334-016-0561-4","journal-title":"Magnetic Resonance Materials in Physics, Biology and Medicine"},{"issue":"8","key":"9686_CR14","doi-asserted-by":"publisher","first-page":"1862","DOI":"10.1016\/j.neurobiolaging.2014.02.008","volume":"35","author":"MF Callaghan","year":"2014","unstructured":"Callaghan, M. F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M., Chowdhury, R., Diedrichsen, J., Fitzgerald, T. H., Smittenaar, P., Helms, G., Lutti, A., & Weiskopf, N. (2014). Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiology of Aging, 35(8), 1862\u20131872. https:\/\/doi.org\/10.1016\/j.neurobiolaging.2014.02.008","journal-title":"Neurobiology of Aging"},{"issue":"1","key":"9686_CR15","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.neuron.2020.09.031","volume":"108","author":"JA Cardin","year":"2020","unstructured":"Cardin, J. A., Crair, M. C., & Higley, M. J. (2020). Mesoscopic imaging: shining a wide light on large-scale neural dynamics. Neuron, 108(1), 33\u201343. https:\/\/doi.org\/10.1016\/j.neuron.2020.09.031","journal-title":"Neuron"},{"key":"9686_CR16","doi-asserted-by":"publisher","first-page":"429","DOI":"10.1016\/j.neuroimage.2017.11.066","volume":"182","author":"D Carey","year":"2018","unstructured":"Carey, D., Caprini, F., Allen, M., Lutti, A., Weiskopf, N., Rees, G., Callaghan, M. F., & Dick, F. (2018). Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure. NeuroImage, 182, 429\u2013440. https:\/\/doi.org\/10.1016\/j.neuroimage.2017.11.066","journal-title":"NeuroImage"},{"issue":"2","key":"9686_CR17","doi-asserted-by":"publisher","first-page":"172","DOI":"10.4103\/ipj.ipj_88_18","volume":"27","author":"A Chail","year":"2018","unstructured":"Chail, A., Saini, R. K., Bhat, P. S., Srivastava, K., & Chauhan, V. (2018). Transcranial magnetic stimulation: A review of its evolution and current applications. Industrial Psychiatry Journal, 27(2), 172\u2013180. https:\/\/doi.org\/10.4103\/ipj.ipj_88_18","journal-title":"Industrial Psychiatry Journal"},{"issue":"3","key":"9686_CR18","doi-asserted-by":"publisher","first-page":"289","DOI":"10.1007\/s11065-015-9294-9","volume":"25","author":"JE Chen","year":"2015","unstructured":"Chen, J. E., & Glover, G. H. (2015). Functional Magnetic Resonance Imaging Methods. Neuropsychology Review, 25(3), 289\u2013313. https:\/\/doi.org\/10.1007\/s11065-015-9294-9","journal-title":"Neuropsychology Review"},{"issue":"2","key":"9686_CR19","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1016\/j.neuron.2012.07.011","volume":"76","author":"Q Chen","year":"2012","unstructured":"Chen, Q., Cichon, J., Wang, W., Qiu, L., Lee, S.-J.R., Campbell, N. R., Destefino, N., Goard, M. J., Fu, Z., Yasuda, R., Looger, L. L., Arenkiel, B. R., Gan, W.-B., & Feng, G. (2012). Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron, 76(2), 297\u2013308. https:\/\/doi.org\/10.1016\/j.neuron.2012.07.011","journal-title":"Neuron"},{"issue":"3","key":"9686_CR20","doi-asserted-by":"publisher","first-page":"e000787","DOI":"10.1161\/JAHA.114.000787","volume":"3","author":"BR Chen","year":"2014","unstructured":"Chen, B. R., Kozberg, M. G., Bouchard, M. B., Shaik, M. A., & Hillman, E. M. C. (2014). A critical role for the vascular endothelium in functional neurovascular coupling in the brain. Journal of the American Heart Association, 3(3), e000787. https:\/\/doi.org\/10.1161\/JAHA.114.000787","journal-title":"Journal of the American Heart Association"},{"key":"9686_CR21","doi-asserted-by":"publisher","first-page":"118658","DOI":"10.1016\/j.neuroimage.2021.118658","volume":"245","author":"JE Chen","year":"2021","unstructured":"Chen, J. E., Glover, G. H., Fultz, N. E., Rosen, B. R., Polimeni, J. R., & Lewis, L. D. (2021). Investigating mechanisms of fast BOLD responses: The effects of stimulus intensity and of spatial heterogeneity of hemodynamics. NeuroImage, 245, 118658. https:\/\/doi.org\/10.1016\/j.neuroimage.2021.118658","journal-title":"NeuroImage"},{"issue":"2","key":"9686_CR22","doi-asserted-by":"publisher","first-page":"630","DOI":"10.1002\/mrm.29865","volume":"91","author":"J Cho","year":"2024","unstructured":"Cho, J., Gagoski, B., Kim, T. H., Wang, F., Manhard, M. K., Dean Iii, D., Kecskemeti, S., Caprihan, A., Lo, W.-C., Splitthoff, D. N., Liu, W., Polak, D., Cauley, S., Setsompop, K., Grant, P. E., & Bilgic, B. (2024). Time-efficient, high-resolution 3T whole-brain relaxometry using 3D-QALAS with wave-CAIPI readouts. Magnetic Resonance in Medicine, 91(2), 630\u2013639. https:\/\/doi.org\/10.1002\/mrm.29865","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1","key":"9686_CR23","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1016\/j.brs.2021.11.010","volume":"15","author":"SL Cohen","year":"2022","unstructured":"Cohen, S. L., Bikson, M., Badran, B. W., & George, M. S. (2022). A visual and narrative timeline of US FDA milestones for Transcranial Magnetic Stimulation (TMS) devices. Brain Stimulation, 15(1), 73\u201375. https:\/\/doi.org\/10.1016\/j.brs.2021.11.010","journal-title":"Brain Stimulation"},{"issue":"4","key":"9686_CR24","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1016\/j.jaapos.2007.01.119","volume":"11","author":"IP Conner","year":"2007","unstructured":"Conner, I. P., Odom, J. V., Schwartz, T. L., & Mendola, J. D. (2007). Monocular activation of V1 and V2 in amblyopic adults measured with functional magnetic resonance imaging. Journal of American Association for Pediatric Ophthalmology and Strabismus, 11(4), 341\u2013350. https:\/\/doi.org\/10.1016\/j.jaapos.2007.01.119","journal-title":"Journal of American Association for Pediatric Ophthalmology and Strabismus"},{"issue":"2","key":"9686_CR25","doi-asserted-by":"publisher","first-page":"784","DOI":"10.1002\/mrm.29668","volume":"90","author":"M Davids","year":"2023","unstructured":"Davids, M., Dietz, P., Ruyters, G., Roesler, M., Klein, V., Beckett, A. J. S., Vu, A. T., Gu\u00e9rin, B., Feinberg, D. A., & Wald, L. L. (2023). Peripheral nerve stimulation informed design of a high-performance asymmetric head gradient coil. Magnetic Resonance in Medicine, 90(2), 784\u2013801. https:\/\/doi.org\/10.1002\/mrm.29668","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1","key":"9686_CR26","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1002\/mrm.10678","volume":"51","author":"JA de Zwart","year":"2004","unstructured":"de Zwart, J. A., Ledden, P. J., van Gelderen, P., Bodurka, J., Chu, R., & Duyn, J. D. (2004). Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magnetic Resonance in Medicine., 51(1), 22\u201326. https:\/\/doi.org\/10.1002\/mrm.10678","journal-title":"Magnetic Resonance in Medicine."},{"issue":"3","key":"9686_CR27","doi-asserted-by":"publisher","first-page":"667","DOI":"10.1016\/j.neuroimage.2004.09.013","volume":"24","author":"JA de Zwart","year":"2005","unstructured":"de Zwart, J. A., Silva, A. C., van Gelderen, P., Kellman, P., Fukunaga, M., Chu, R., Koretsky, A. P., Frank, J. A., & Duyn, J. H. (2005). Temporal dynamics of the BOLD fMRI impulse response. NeuroImage, 24(3), 667\u2013677. https:\/\/doi.org\/10.1016\/j.neuroimage.2004.09.013","journal-title":"NeuroImage"},{"issue":"2","key":"9686_CR28","doi-asserted-by":"publisher","first-page":"353","DOI":"10.1016\/S0896-6273(03)00403-3","volume":"39","author":"A Devor","year":"2003","unstructured":"Devor, A., Dunn, A. K., Andermann, M. L., Ulbert, I., Boas, D. A., & Dale, A. M. (2003). Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron, 39(2), 353\u2013359. https:\/\/doi.org\/10.1016\/S0896-6273(03)00403-3","journal-title":"Neuron"},{"issue":"16","key":"9686_CR29","doi-asserted-by":"publisher","first-page":"4452","DOI":"10.1523\/JNEUROSCI.0134-07.2007","volume":"27","author":"A Devor","year":"2007","unstructured":"Devor, A., Tian, P., Nishimura, N., Teng, I. C., Hillman, E. M. C., Narayanan, S. N., Ulbert, I., Boas, D. A., Kleinfeld, D., & Dale, A. M. (2007). Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. Journal of Neuroscience, 27(16), 4452\u20134459. https:\/\/doi.org\/10.1523\/JNEUROSCI.0134-07.2007","journal-title":"Journal of Neuroscience"},{"issue":"1","key":"9686_CR30","doi-asserted-by":"publisher","first-page":"733","DOI":"10.1038\/s41598-017-00634-6","volume":"7","author":"SO Dumoulin","year":"2017","unstructured":"Dumoulin, S. O., Harvey, B. M., Fracasso, A., Zuiderbaan, W., Luijten, P. R., Wandell, B. A., & Petridou, N. (2017). In vivo evidence of functional and anatomical stripe-based subdivisions in human V2 and V3. Scientific Reports, 7(1), 733. https:\/\/doi.org\/10.1038\/s41598-017-00634-6","journal-title":"Scientific Reports"},{"issue":"19","key":"9686_CR31","doi-asserted-by":"publisher","first-page":"10904","DOI":"10.1073\/pnas.191101098","volume":"98","author":"TQ Duong","year":"2001","unstructured":"Duong, T. Q., Kim, D.-S., U\u011furbil, K., & Kim, S.-G. (2001). Localized cerebral blood flow response at submillimeter columnar resolution. Proceedings of the National Academy of Sciences, 98(19), 10904\u201310909. https:\/\/doi.org\/10.1073\/pnas.191101098","journal-title":"Proceedings of the National Academy of Sciences"},{"issue":"6","key":"9686_CR32","doi-asserted-by":"publisher","first-page":"1019","DOI":"10.1002\/mrm.10472","volume":"49","author":"TQ Duong","year":"2003","unstructured":"Duong, T. Q., Yacoub, E., Adriany, G., Hu, X., Ugurbil, K., & Kim, S. G. (2003). Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient-echo and spin-echo fMRI with suppression of blood effects. Magnetic Resonance in Medicine, 49(6), 1019\u20131027. https:\/\/doi.org\/10.1002\/mrm.10472","journal-title":"Magnetic Resonance in Medicine"},{"issue":"6","key":"9686_CR33","doi-asserted-by":"publisher","first-page":"505","DOI":"10.1097\/NEN.0b013e3182945bf6","volume":"72","author":"BL Edlow","year":"2013","unstructured":"Edlow, B. L., Haynes, R. L., Takahashi, E., Klein, J. P., Cummings, P., Benner, T., Greer, D. M., Greenberg, S. M., Wu, O., Kinney, H. C., & Folkerth, R. D. (2013). Disconnection of the ascending arousal system in traumatic coma. Journal of Neuropathology and Experimental Neurology, 72(6), 505\u2013523. https:\/\/doi.org\/10.1097\/NEN.0b013e3182945bf6","journal-title":"Journal of Neuropathology and Experimental Neurology"},{"issue":"1","key":"9686_CR34","doi-asserted-by":"publisher","first-page":"244","DOI":"10.1038\/s41597-019-0254-8","volume":"6","author":"BL Edlow","year":"2019","unstructured":"Edlow, B. L., Mareyam, A., Horn, A., Polimeni, J. R., Witzel, T., Tisdall, M. D., Augustinack, J. C., Stockmann, J. P., Diamond, B. R., Stevens, A., Tirrell, L. S., Folkerth, R. D., Wald, L. L., Fischl, B., & van der Kouwe, A. (2019). 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Scientific Data, 6(1), 244. https:\/\/doi.org\/10.1038\/s41597-019-0254-8","journal-title":"Scientific Data"},{"issue":"2","key":"9686_CR35","doi-asserted-by":"publisher","first-page":"364","DOI":"10.1007\/s12028-020-01062-7","volume":"33","author":"BL Edlow","year":"2020","unstructured":"Edlow, B. L., Barra, M. E., Zhou, D. W., Foulkes, A. S., Snider, S. B., Threlkeld, Z. D., Chakravarty, S., Kirsch, J. E., Chan, S. T., Meisler, S. L., Bleck, T. P., Fins, J. J., Giacino, J. T., Hochberg, L. R., Solt, K., Brown, E. N., & Bodien, Y. G. (2020). Personalized connectome mapping to guide targeted therapy and promote recovery of consciousness in the intensive care unit. Neurocritical Care, 33(2), 364\u2013375. https:\/\/doi.org\/10.1007\/s12028-020-01062-7","journal-title":"Neurocritical Care"},{"key":"9686_CR36","doi-asserted-by":"publisher","unstructured":"Edlow, B., Olchanyi, M., Freeman, H. J., Li, J., Maffei, C., Snider, S., Zollei, L., Iglesias, J. E., Augustinack, J., Bodien, Y. G., Haynes, R., Greve, D. N., Diamond, B. R., Stevens, A., Giacino, J. T., Destrieux, C., van der Kouwe, A., Brown, E. N., Folkerth, R. D., Fischl, B., & Kinney, H. (2024) Multimodal MRI revelas brainstem connections that sustain wakefulness in human consciousness. Science Translational Medicine, 16(745). https:\/\/doi.org\/10.1126\/scitranslmed.adj4303","DOI":"10.1126\/scitranslmed.adj4303"},{"issue":"1","key":"9686_CR37","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1002\/mrm.24225","volume":"69","author":"P Ehses","year":"2013","unstructured":"Ehses, P., Seiberlich, N., Ma, D., Breuer, F. A., Jakob, P. M., Griswold, M. A., & Gulani, V. (2013). IR TrueFISP with a golden-ratio-based radial readout: Fast quantification of T1, T2, and proton density. Magnetic Resonance in Medicine, 69(1), 71\u201381. https:\/\/doi.org\/10.1002\/mrm.24225","journal-title":"Magnetic Resonance in Medicine"},{"key":"9686_CR38","doi-asserted-by":"publisher","unstructured":"Fan, Q., Eichner, C., Afzali, M., Mueller, L., Tax, C. M. W., Davids, M., Mahmutovic, M., Keil, B., Bilgic, B., Setsompop, K., Lee, H.-H., Tian, Q., Maffei, C., Ramos-Llord\u00e9n, G., Nummenmaa, A., Witzel, T., Yendiki, A., Song, Y.-Q., Huang, C.-C., ... Huang, S. Y. (2022). Mapping the human connectome using diffusion MRI at 300 mT\/m gradient strength: Methodological advances and scientific impact. NeuroImage, 254, 118958. https:\/\/doi.org\/10.1016\/j.neuroimage.2022.118958","DOI":"10.1016\/j.neuroimage.2022.118958"},{"key":"9686_CR39","doi-asserted-by":"publisher","unstructured":"Feinberg, D. A., Beckett, A. J. S., Vu, A. T., Stockmann, J., Huber, L., Ma, S., Ahn, S., Setsompop, K., Cao, X., Park, S., Liu, C., Wald, L. L., Polimeni, J. R., Mareyam, A., Gruber, B., Stirnberg, R., Liao, C., Yacoub, E., Davids, M., ... Dietz, P. (2023). Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla. Nature Methods, 20(12), 2048\u20132057. https:\/\/doi.org\/10.1038\/s41592-023-02068-7","DOI":"10.1038\/s41592-023-02068-7"},{"issue":"4","key":"9686_CR40","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1001\/jamaneurol.2023.5634","volume":"81","author":"B Fischer","year":"2024","unstructured":"Fischer, B., & Edlow, B. (2024). Coma prognostication after acute brain injury: A review. JAMA Neurology., 81(4), 405\u2013415. https:\/\/doi.org\/10.1001\/jamaneurol.2023.5634","journal-title":"JAMA Neurology."},{"issue":"3","key":"9686_CR41","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1016\/0730-725x(87)90021-x","volume":"5","author":"EK Fram","year":"1987","unstructured":"Fram, E. K., Herfkens, R. J., Johnson, G. A., Glover, G. H., Karis, J. P., Shimakawa, A., Perkins, T. G., & Pelc, N. J. (1987). Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magnetic Resonance Imaging, 5(3), 201\u2013208. https:\/\/doi.org\/10.1016\/0730-725x(87)90021-x","journal-title":"Magnetic Resonance Imaging"},{"issue":"1","key":"9686_CR42","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1089\/brain.2011.0008","volume":"1","author":"KJ Friston","year":"2011","unstructured":"Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connect, 1(1), 13\u201336. https:\/\/doi.org\/10.1089\/brain.2011.0008","journal-title":"Brain Connect"},{"key":"9686_CR43","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1016\/j.mri.2019.08.031","volume":"63","author":"S Fujita","year":"2019","unstructured":"Fujita, S., Hagiwara, A., Hori, M., Warntjes, M., Kamagata, K., Fukunaga, I., Andica, C., Maekawa, T., Irie, R., Takemura, M. Y., Kumamaru, K. K., Wada, A., Suzuki, M., Ozaki, Y., Abe, O., & Aoki, S. (2019). Three-dimensional high-resolution simultaneous quantitative mapping of the whole brain with 3D-QALAS: An accuracy and repeatability study. Magnetic Resonance Imaging, 63, 235\u2013243. https:\/\/doi.org\/10.1016\/j.mri.2019.08.031","journal-title":"Magnetic Resonance Imaging"},{"issue":"8","key":"9686_CR44","doi-asserted-by":"publisher","first-page":"3663","DOI":"10.1523\/jneurosci.3555-14.2015","volume":"35","author":"L Gagnon","year":"2015","unstructured":"Gagnon, L., Sakad\u017ei\u0107, S., Lesage, F., Musacchia, J. J., Lefebvre, J., Fang, Q., Y\u00fccel, M. A., Evans, K. C., Mandeville, E. T., Cohen-Adad, J., Polimeni, J. A. R., Yaseen, M. A., Lo, E. H., Greve, D. N., Buxton, R. B., Dale, A. M., Devor, A., & Boas, D. A. (2015). Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe. The Journal of Neuroscience, 35(8), 3663\u20133675. https:\/\/doi.org\/10.1523\/jneurosci.3555-14.2015","journal-title":"The Journal of Neuroscience"},{"key":"9686_CR45","doi-asserted-by":"publisher","unstructured":"Gomez, D. E. P., Polimeni, J. R., & Lewis, L. D. (2024). The temporal specificity of BOLD fMRI is systematically related to anatomical and vascular features of the human brain. bioRxiv. https:\/\/doi.org\/10.1101\/2024.02.01.578428","DOI":"10.1101\/2024.02.01.578428"},{"issue":"7","key":"9686_CR46","doi-asserted-by":"publisher","first-page":"508","DOI":"10.1016\/j.tins.2023.04.001","volume":"46","author":"AS Greene","year":"2023","unstructured":"Greene, A. S., Horien, C., Barson, D., Scheinost, D., & Constable, R. T. (2023). Why is everyone talking about brain state? Trends in Neurosciences, 46(7), 508\u2013524. https:\/\/doi.org\/10.1016\/j.tins.2023.04.001","journal-title":"Trends in Neurosciences"},{"issue":"6","key":"9686_CR47","doi-asserted-by":"publisher","first-page":"1202","DOI":"10.1002\/mrm.10171","volume":"47","author":"MA Griswold","year":"2002","unstructured":"Griswold, M. A., Jakob, P. M., Heidemann, R. M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., & Haase, A. (2002). Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 47(6), 1202\u20131210. https:\/\/doi.org\/10.1002\/mrm.10171","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1","key":"9686_CR48","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1038\/s41467-020-14330-z","volume":"11","author":"S Grubb","year":"2020","unstructured":"Grubb, S., Cai, C., Hald, B. O., Khennouf, L., Murmu, R. P., Jensen, A. G. K., Fordsmann, J., Zambach, S., & Lauritzen, M. (2020). Precapillary sphincters maintain perfusion in the cerebral cortex. Nature Communications, 11(1), 395. https:\/\/doi.org\/10.1038\/s41467-020-14330-z","journal-title":"Nature Communications"},{"issue":"6","key":"9686_CR49","doi-asserted-by":"publisher","first-page":"2592","DOI":"10.1002\/mrm.29798","volume":"90","author":"B Gruber","year":"2023","unstructured":"Gruber, B., Stockmann, J. P., Mareyam, A., Keil, B., Bilgic, B., Chang, Y., Kazemivalipour, E., Beckett, A. J. S., Vu, A. T., Feinberg, D. A., & Wald, L. L. (2023). A 128-channel receive array for cortical brain imaging at 7 T. Magnetic Resonance in Medicine, 90(6), 2592\u20132607. https:\/\/doi.org\/10.1002\/mrm.29798","journal-title":"Magnetic Resonance in Medicine"},{"key":"9686_CR50","doi-asserted-by":"publisher","unstructured":"Gulani, V., & Seiberlich, N. (2020). Quantitative MRI: Rationale and Challenges. In N. Seiberlich, V. Gulani, F. Calamante, A. Campbell-Washburn, M. Doneva, H. H. Hu, & S. Sourbron (Eds.), Advances in Magnetic Resonance Technology and Applications (Vol. 1, pp. xxxvii-li). Academic Press. https:\/\/doi.org\/10.1016\/B978-0-12-817057-1.00001-9","DOI":"10.1016\/B978-0-12-817057-1.00001-9"},{"key":"9686_CR51","doi-asserted-by":"publisher","first-page":"e78756","DOI":"10.7554\/eLife.78756","volume":"12","author":"D Haenelt","year":"2023","unstructured":"Haenelt, D., Trampel, R., Nasr, S., Polimeni, J. R., Tootell, R. B. H., Sereno, M. I., Pine, K. J., Edwards, L. J., Helbling, S., & Weiskopf, N. (2023). High-resolution quantitative and functional MRI indicate lower myelination of thin and thick stripes in human secondary visual cortex. eLife, 12, e78756. https:\/\/doi.org\/10.7554\/eLife.78756","journal-title":"eLife"},{"issue":"3","key":"9686_CR52","doi-asserted-by":"publisher","first-page":"668","DOI":"10.1109\/tmi.2013.2293974","volume":"33","author":"JP Haldar","year":"2014","unstructured":"Haldar, J. P. (2014). Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI. IEEE Transactions on Medical Imaging, 33(3), 668\u2013681. https:\/\/doi.org\/10.1109\/tmi.2013.2293974","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"7494","key":"9686_CR53","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1038\/nature13165","volume":"508","author":"CN Hall","year":"2014","unstructured":"Hall, C. N., Reynell, C., Gesslein, B., Hamilton, N. B., Mishra, A., Sutherland, B. A., O\u2019Farrell, F. M., Buchan, A. M., Lauritzen, M., & Attwell, D. (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 508(7494), 55\u201360. https:\/\/doi.org\/10.1038\/nature13165","journal-title":"Nature"},{"issue":"2","key":"9686_CR54","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1016\/j.neuron.2007.06.026","volume":"55","author":"M Hallett","year":"2007","unstructured":"Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55(2), 187\u2013199. https:\/\/doi.org\/10.1016\/j.neuron.2007.06.026","journal-title":"Neuron"},{"issue":"11","key":"9686_CR55","doi-asserted-by":"publisher","first-page":"e1006549","DOI":"10.1371\/journal.pcbi.1006549","volume":"14","author":"G Hartung","year":"2018","unstructured":"Hartung, G., Vesel, C., Morley, R., Alaraj, A., Sled, J., Kleinfeld, D., & Linninger, A. (2018). Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex. PLoS Computational Biology, 14(11), e1006549. https:\/\/doi.org\/10.1371\/journal.pcbi.1006549","journal-title":"PLoS Computational Biology"},{"issue":"5","key":"9686_CR56","doi-asserted-by":"publisher","first-page":"e12687","DOI":"10.1111\/micc.12687","volume":"28","author":"G Hartung","year":"2021","unstructured":"Hartung, G., Badr, S., Mihelic, S., Dunn, A., Cheng, X., Kura, S., Boas, D. A., Kleinfeld, D., Alaraj, A., & Linninger, A. A. (2021a). Mathematical synthesis of the cortical circulation for the whole mouse brain\u2014part II: Microcirculatory closure. Microcirculation, 28(5), e12687. https:\/\/doi.org\/10.1111\/micc.12687","journal-title":"Microcirculation"},{"issue":"1","key":"9686_CR57","doi-asserted-by":"publisher","first-page":"e1008584","DOI":"10.1371\/journal.pcbi.1008584","volume":"17","author":"G Hartung","year":"2021","unstructured":"Hartung, G., Badr, S., Moeini, M., Lesage, F., Kleinfeld, D., Alaraj, A., & Linninger, A. (2021b). Voxelized simulation of cerebral oxygen perfusion elucidates hypoxia in aged mouse cortex. PLoS Computational Biology, 17(1), e1008584. https:\/\/doi.org\/10.1371\/journal.pcbi.1008584","journal-title":"PLoS Computational Biology"},{"key":"9686_CR58","unstructured":"Hartung, G., Pfannmoeller, J., Berman, A. J. L., & Polimeni, J. R. (2022). Simulated fMRI responses using human vascular anatomical network models with varying architecture and dynamics, Proceedings of the 31st annual meeting of ISMRM. London, UK. 0682."},{"issue":"1","key":"9686_CR59","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1016\/j.neuron.2015.06.001","volume":"87","author":"RA Hill","year":"2015","unstructured":"Hill, R. A., Tong, L., Yuan, P., Murikinati, S., Gupta, S., & Grutzendler, J. (2015). Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron, 87(1), 95\u2013110. https:\/\/doi.org\/10.1016\/j.neuron.2015.06.001","journal-title":"Neuron"},{"key":"9686_CR60","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1146\/annurev-neuro-071013-014111","volume":"37","author":"EMC Hillman","year":"2014","unstructured":"Hillman, E. M. C. (2014). Coupling mechanism and significance of the BOLD signal: A status report. Annual Review of Neuroscience, 37, 161\u2013181. https:\/\/doi.org\/10.1146\/annurev-neuro-071013-014111","journal-title":"Annual Review of Neuroscience"},{"issue":"1","key":"9686_CR61","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/j.neuroimage.2006.11.032","volume":"35","author":"EMC Hillman","year":"2007","unstructured":"Hillman, E. M. C., Devor, A., Bouchard, M. B., Dunn, A. K., Krauss, G. W., Skoch, J., Bacskai, B. J., Dale, A. M., & Boas, D. A. (2007). Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. NeuroImage, 35(1), 89\u2013104. https:\/\/doi.org\/10.1016\/j.neuroimage.2006.11.032","journal-title":"NeuroImage"},{"key":"9686_CR62","doi-asserted-by":"publisher","unstructured":"Hollunder, B., Ostrem, J. L., Sahin, I. A., Rajamani, N., Oxenford, S., Butenko, K., Neudorfer, C., Reinhardt, P., Zvarova, P., Polosan, M., Akram, H., Vissani, M., Zhang, C., Sun, B., Navratil, P., Reich, M. M., Volkmann, J., Yeh, F.-C., Baldermann, J. C., ... Horn, A. (2024). Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation. Nature Neuroscience, 27(3), 573\u2013586. https:\/\/doi.org\/10.1038\/s41593-024-01570-1","DOI":"10.1038\/s41593-024-01570-1"},{"key":"9686_CR63","unstructured":"Hu, Z., Proulx, S., Gomez, D. E. P., Varadarajan, D., Bollmann, S., Tan, C. O., Gokcal, E., Gurol, M. E., & Polimeni, J. R. (2024) Visual stimulus-evoked blood velocity responses at far upstream branches of the Posterior Cerebral Artery measured with phase-contrast fMRA. Proceedings of the 33rd annual meeting of ISMRM. Singapore. 1287."},{"key":"9686_CR64","doi-asserted-by":"publisher","unstructured":"Huang, S. Y., Witzel, T., Keil, B., Scholz, A., Davids, M., Dietz, P., Rummert, E., Ramb, R., Kirsch, J. E., Yendiki, A., Fan, Q., Tian, Q., Ramos-Llord\u00e9n, G., Lee, H. H., Nummenmaa, A., Bilgic, B., Setsompop, K., Wang, F., Avram, A. V., \u2026 & Rosen, B. R. (2021). Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. NeuroImage, 243, 118530. https:\/\/doi.org\/10.1016\/j.neuroimage.2021.118530","DOI":"10.1016\/j.neuroimage.2021.118530"},{"issue":"1","key":"9686_CR65","doi-asserted-by":"publisher","first-page":"106","DOI":"10.1113\/jphysiol.1962.sp006837","volume":"160","author":"DH Hubel","year":"1962","unstructured":"Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat\u2019s visual cortex. Journal of Physiology, 160(1), 106\u2013154. https:\/\/doi.org\/10.1113\/jphysiol.1962.sp006837","journal-title":"Journal of Physiology"},{"issue":"5","key":"9686_CR66","doi-asserted-by":"publisher","first-page":"619","DOI":"10.1002\/mrm.1910330506","volume":"33","author":"W Irnich","year":"1995","unstructured":"Irnich, W., & Schmitt, F. (1995). Magnetostimulation in MRI. Magnetic Resonance in Medicine, 33(5), 619\u2013623. https:\/\/doi.org\/10.1002\/mrm.1910330506","journal-title":"Magnetic Resonance in Medicine"},{"key":"9686_CR67","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1016\/j.jneumeth.2018.09.033","volume":"311","author":"H Jahanian","year":"2019","unstructured":"Jahanian, H., Holdsworth, S., Christen, T., Wu, H., Zhu, K., Kerr, A. B., Middione, M. J., Dougherty, R. F., Moseley, M., & Zaharchuk, G. (2019). Advantages of short repetition time resting-state functional MRI enabled by simultaneous multi-slice imaging. Journal of Neuroscience Methods, 311, 122\u2013132. https:\/\/doi.org\/10.1016\/j.jneumeth.2018.09.033","journal-title":"Journal of Neuroscience Methods"},{"issue":"5","key":"9686_CR68","doi-asserted-by":"publisher","first-page":"2019","DOI":"10.1002\/mrm.29786","volume":"90","author":"Y Jun","year":"2023","unstructured":"Jun, Y., Cho, J., Wang, X., Gee, M., Grant, P. E., Bilgic, B., & Gagoski, B. (2023). SSL-QALAS: Self-Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D-QALAS. Magnetic Resonance in Medicine, 90(5), 2019\u20132032. https:\/\/doi.org\/10.1002\/mrm.29786","journal-title":"Magnetic Resonance in Medicine"},{"issue":"6","key":"9686_CR69","doi-asserted-by":"publisher","first-page":"2459","DOI":"10.1002\/mrm.30018","volume":"91","author":"Y Jun","year":"2024","unstructured":"Jun, Y., Arefeen, Y., Cho, J., Fujita, S., Wang, X., Grant, P. E., Gagoski, B., Jaimes, C., Gee, M. S., & Bilgic, B. (2024b). Zero-DeepSub: Zero-shot deep subspace reconstruction for rapid multiparametric quantitative MRI using 3D-QALAS. Magnetic Resonance in Medicine, 91(6), 2459\u20132482. https:\/\/doi.org\/10.1002\/mrm.30018","journal-title":"Magnetic Resonance in Medicine"},{"key":"9686_CR70","unstructured":"Jun, Y., Liu, Q., Cho, J., Yong, X., Fujita, S., Huang, S. Y., Rathi, Y., & Bilgic, B. (2024a). PRIME: Phase Reversed Interleaved Multi-Echo acquisition enables highly accelerated distortion-free diffusion MRI. Proceedings of the 33rd Annual Meeting ISMRM, Singapore. 1010."},{"issue":"3","key":"9686_CR71","doi-asserted-by":"publisher","first-page":"1021","DOI":"10.1002\/mrm.26182","volume":"77","author":"TH Kim","year":"2017","unstructured":"Kim, T. H., Setsompop, K., & Haldar, J. P. (2017). LORAKS makes better SENSE: Phase-constrained partial fourier SENSE reconstruction without phase calibration. Magnetic Resonance in Medicine, 77(3), 1021\u20131035. https:\/\/doi.org\/10.1002\/mrm.26182","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1","key":"9686_CR72","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1186\/s12968-014-0102-0","volume":"16","author":"S Kvernby","year":"2014","unstructured":"Kvernby, S., Warntjes, M. J., Haraldsson, H., Carlh\u00e4ll, C. J., Engvall, J., & Ebbers, T. (2014). Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. Journal of Cardiovascular Magnetic Resonance, 16(1), 102. https:\/\/doi.org\/10.1186\/s12968-014-0102-0","journal-title":"Journal of Cardiovascular Magnetic Resonance"},{"issue":"12","key":"9686_CR73","doi-asserted-by":"publisher","first-page":"5675","DOI":"10.1073\/pnas.89.12.5675","volume":"89","author":"KK Kwong","year":"1992","unstructured":"Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., & Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 89(12), 5675\u20135679. https:\/\/doi.org\/10.1073\/pnas.89.12.5675","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"9686_CR74","doi-asserted-by":"publisher","first-page":"116446","DOI":"10.1016\/j.neuroimage.2019.116446","volume":"208","author":"H Lambers","year":"2020","unstructured":"Lambers, H., Segeroth, M., Albers, F., Wachsmuth, L., van Alst, T. M., & Faber, C. (2020). A cortical rat hemodynamic response function for improved detection of BOLD activation under common experimental conditions. NeuroImage, 208, 116446. https:\/\/doi.org\/10.1016\/j.neuroimage.2019.116446","journal-title":"NeuroImage"},{"key":"9686_CR75","doi-asserted-by":"publisher","unstructured":"Latimer, C. S., et al. (2023). Protocol for the Systematic Fixation, Circuit-Based Sampling, and Qualitative and Quantitative Neuropathological Analysis of Human Brain Tissue. In: Chun, J. (Eds) Alzheimer\u2019s Disease. Methods in Molecular Biology (vol 2561). Humana, New York, NY. https:\/\/doi.org\/10.1007\/978-1-0716-2655-9_1","DOI":"10.1007\/978-1-0716-2655-9_1"},{"issue":"4","key":"9686_CR76","doi-asserted-by":"publisher","first-page":"1544","DOI":"10.1002\/mrm.26235","volume":"77","author":"KJ Layton","year":"2017","unstructured":"Layton, K. J., Kroboth, S., Jia, F., Littin, S., Yu, H., Leupold, J., Nielsen, J.-F., St\u00f6cker, T., & Zaitsev, M. (2017). Pulseq: A rapid and hardware-independent pulse sequence prototyping framework. Magnetic Resonance in Medicine, 77(4), 1544\u20131552. https:\/\/doi.org\/10.1002\/mrm.26235","journal-title":"Magnetic Resonance in Medicine"},{"issue":"5","key":"9686_CR77","doi-asserted-by":"publisher","first-page":"919","DOI":"10.1002\/(sici)1522-2594(199911)42:5<919::aid-mrm12>3.0.co;2-8","volume":"42","author":"SP Lee","year":"1999","unstructured":"Lee, S. P., Silva, A. C., Ugurbil, K., & Kim, S. G. (1999). Diffusion-weighted spin-echo fMRI at 9 4 T: microvascular\/tissue contribution to BOLD signal changes. Magn Reson Med, 42(5), 919\u2013928. https:\/\/doi.org\/10.1002\/(sici)1522-2594(199911)42:5%3c919::aid-mrm12%3e3.0.co;2-8","journal-title":"Magn Reson Med"},{"issue":"43","key":"9686_CR78","doi-asserted-by":"publisher","first-page":"E6679","DOI":"10.1073\/pnas.1608117113","volume":"113","author":"LD Lewis","year":"2016","unstructured":"Lewis, L. D., Setsompop, K., Rosen, B. R., & Polimeni, J. R. (2016). Fast fMRI can detect oscillatory neural activity in humans. Proceedings of the National Academy of Sciences, 113(43), E6679\u2013E6685. https:\/\/doi.org\/10.1073\/pnas.1608117113","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"9686_CR79","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1016\/j.neuroimage.2018.06.056","volume":"181","author":"LD Lewis","year":"2018","unstructured":"Lewis, L. D., Setsompop, K., Rosen, B. R., & Polimeni, J. R. (2018). Stimulus-dependent hemodynamic response timing across the human subcortical-cortical visual pathway identified through high spatiotemporal resolution 7T fMRI. NeuroImage, 181, 279\u2013291. https:\/\/doi.org\/10.1016\/j.neuroimage.2018.06.056","journal-title":"NeuroImage"},{"issue":"6","key":"9686_CR80","doi-asserted-by":"publisher","first-page":"eaaw0807","DOI":"10.1126\/sciadv.aaw0807","volume":"5","author":"M Li","year":"2019","unstructured":"Li, M., Song, X. M., Xu, T., Hu, D., Roe, A. W., & Li, C. Y. (2019). Subdomains within orientation columns of primary visual cortex. Science Advances, 5(6), eaaw0807. https:\/\/doi.org\/10.1126\/sciadv.aaw0807","journal-title":"Science Advances"},{"key":"9686_CR81","doi-asserted-by":"publisher","first-page":"118758","DOI":"10.1016\/j.neuroimage.2021.118758","volume":"245","author":"J Li","year":"2021","unstructured":"Li, J., Curley, W. H., Guerin, B., Dougherty, D. D., Dalca, A. V., Fischl, B., Horn, A., & Edlow, B. L. (2021). Mapping the subcortical connectivity of the human default mode network. NeuroImage, 245, 118758. https:\/\/doi.org\/10.1016\/j.neuroimage.2021.118758","journal-title":"NeuroImage"},{"key":"9686_CR82","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1016\/j.neuroimage.2017.08.030","volume":"162","author":"C Liao","year":"2017","unstructured":"Liao, C., Bilgic, B., Manhard, M. K., Zhao, B., Cao, X., Zhong, J., Wald, L. L., & Setsompop, K. (2017). 3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction. NeuroImage, 162, 13\u201322. https:\/\/doi.org\/10.1016\/j.neuroimage.2017.08.030","journal-title":"NeuroImage"},{"issue":"2","key":"9686_CR83","doi-asserted-by":"publisher","first-page":"791","DOI":"10.1002\/mrm.28748","volume":"86","author":"C Liao","year":"2021","unstructured":"Liao, C., Bilgic, B., Tian, Q., Stockmann, J. P., Cao, X., Fan, Q., Iyer, S. S., Wang, F., Ngamsombat, C., Lo, W. C., Manhard, M. K., Huang, S. Y., Wald, L. L., & Setsompop, K. (2021). Distortion-free, high-isotropic-resolution diffusion MRI with gSlider BUDA-EPI and multicoil dynamic B(0) shimming. Magnetic Resonance in Medicine, 86(2), 791\u2013803. https:\/\/doi.org\/10.1002\/mrm.28748","journal-title":"Magnetic Resonance in Medicine"},{"key":"9686_CR84","doi-asserted-by":"publisher","first-page":"120168","DOI":"10.1016\/j.neuroimage.2023.120168","volume":"275","author":"C Liao","year":"2023","unstructured":"Liao, C., Yarach, U., Cao, X., Iyer, S. S., Wang, N., Kim, T. H., Tian, Q., Bilgic, B., Kerr, A. B., & Setsompop, K. (2023). High-fidelity mesoscale in-vivo diffusion MRI through gSlider-BUDA and circular EPI with S-LORAKS reconstruction. NeuroImage, 275, 120168. https:\/\/doi.org\/10.1016\/j.neuroimage.2023.120168","journal-title":"NeuroImage"},{"issue":"11","key":"9686_CR85","doi-asserted-by":"publisher","first-page":"2264","DOI":"10.1007\/s10439-013-0828-0","volume":"41","author":"AA Linninger","year":"2013","unstructured":"Linninger, A. A., Gould, I. G., Marinnan, T., Hsu, C. Y., Chojecki, M., & Alaraj, A. (2013). Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex. Annals of Biomedical Engineering, 41(11), 2264\u20132284. https:\/\/doi.org\/10.1007\/s10439-013-0828-0","journal-title":"Annals of Biomedical Engineering"},{"key":"9686_CR86","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1016\/j.compbiomed.2019.05.004","volume":"110","author":"A Linninger","year":"2019","unstructured":"Linninger, A., Hartung, G., Badr, S., & Morley, R. (2019). Mathematical synthesis of the cortical circulation for the whole mouse brain-part I. theory and image integration. Computers in Biology and Medicine, 110, 265\u2013275. https:\/\/doi.org\/10.1016\/j.compbiomed.2019.05.004","journal-title":"Computers in Biology and Medicine"},{"key":"9686_CR87","doi-asserted-by":"publisher","unstructured":"Liu, C. J., Ammon, W., Jones, R. J., Nolan, J. C., Gong, D., Maffei, C., Edlow, B. L., Augustinack, J. C., Magnain, C., Yendiki, A., Villiger, M., Fischl, B., & Wang, H. (2023). Quantitative imaging of three-dimensional fiber orientation in the human brain via two illumination angles using polarization-sensitive optical coherence tomography. bioRxiv. https:\/\/doi.org\/10.1101\/2023.10.20.563298","DOI":"10.1101\/2023.10.20.563298"},{"issue":"1","key":"9686_CR88","doi-asserted-by":"publisher","first-page":"735","DOI":"10.1146\/annurev.physiol.66.082602.092845","volume":"66","author":"NK Logothetis","year":"2004","unstructured":"Logothetis, N. K., & Wandell, B. A. (2004). Interpreting the BOLD Signal. Annual Review of Physiology, 66(1), 735\u2013769. https:\/\/doi.org\/10.1146\/annurev.physiol.66.082602.092845","journal-title":"Annual Review of Physiology"},{"issue":"6843","key":"9686_CR89","doi-asserted-by":"publisher","first-page":"150","DOI":"10.1038\/35084005","volume":"412","author":"NK Logothetis","year":"2001","unstructured":"Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150\u2013157. https:\/\/doi.org\/10.1038\/35084005","journal-title":"Nature"},{"issue":"5","key":"9686_CR90","doi-asserted-by":"publisher","first-page":"717","DOI":"10.1038\/nn.4533","volume":"20","author":"TA Longden","year":"2017","unstructured":"Longden, T. A., Dabertrand, F., Koide, M., Gonzales, A. L., Tykocki, N. R., Brayden, J. E., Hill-Eubanks, D., & Nelson, M. T. (2017). Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nature Neuroscience, 20(5), 717\u2013726. https:\/\/doi.org\/10.1038\/nn.4533","journal-title":"Nature Neuroscience"},{"issue":"4","key":"9686_CR91","doi-asserted-by":"publisher","first-page":"2840","DOI":"10.1016\/j.neuroimage.2010.10.040","volume":"54","author":"S Lorthois","year":"2011","unstructured":"Lorthois, S., Cassot, F., & Lauwers, F. (2011). Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: Flow variations induced by global or localized modifications of arteriolar diameters. NeuroImage, 54(4), 2840\u20132853. https:\/\/doi.org\/10.1016\/j.neuroimage.2010.10.040","journal-title":"NeuroImage"},{"issue":"11","key":"9686_CR92","doi-asserted-by":"publisher","first-page":"2675","DOI":"10.1093\/cercor\/bhl177","volume":"17","author":"HD Lu","year":"2007","unstructured":"Lu, H. D., & Roe, A. W. (2007). Optical Imaging of Contrast Response in Macaque Monkey V1 and V2. Cerebral Cortex, 17(11), 2675\u20132695. https:\/\/doi.org\/10.1093\/cercor\/bhl177","journal-title":"Cerebral Cortex"},{"key":"9686_CR93","doi-asserted-by":"publisher","first-page":"160","DOI":"10.1016\/j.neuroimage.2017.01.006","volume":"148","author":"HD Lu","year":"2017","unstructured":"Lu, H. D., Chen, G., Cai, J., & Roe, A. W. (2017). Intrinsic signal optical imaging of visual brain activity: Tracking of fast cortical dynamics. NeuroImage, 148, 160\u2013168. https:\/\/doi.org\/10.1016\/j.neuroimage.2017.01.006","journal-title":"NeuroImage"},{"issue":"7440","key":"9686_CR94","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1038\/nature11971","volume":"495","author":"D Ma","year":"2013","unstructured":"Ma, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J. L., Duerk, J. L., & Griswold, M. A. (2013). Magnetic resonance fingerprinting. Nature, 495(7440), 187\u2013192. https:\/\/doi.org\/10.1038\/nature11971","journal-title":"Nature"},{"issue":"52","key":"9686_CR95","doi-asserted-by":"publisher","first-page":"8463","DOI":"10.1073\/pnas.1525369113","volume":"113","author":"Y Ma","year":"2016","unstructured":"Ma, Y., Shaik, M. A., Kozberg, M. G., Kim, S. H., Portes, J. P., Timerman, D., & Hillman, E. M. (2016a). Resting-state heymodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons. Proceedings of the National Academy of Sciences of the United States of America, 113(52), 8463. https:\/\/doi.org\/10.1073\/pnas.1525369113","journal-title":"Proceedings of the National Academy of Sciences of the United States of America"},{"key":"9686_CR96","doi-asserted-by":"publisher","unstructured":"Ma, Y., Shaik, M. A., Kim, S. H., Kozberg, M. G., Thibodeaux, D. N., Zhao, H. T., Yu, H., & Hillman, E. M. C. (2016b). Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371(1705). https:\/\/doi.org\/10.1098\/rstb.2015.0360","DOI":"10.1098\/rstb.2015.0360"},{"key":"9686_CR97","doi-asserted-by":"publisher","first-page":"118706","DOI":"10.1016\/j.neuroimage.2021.118706","volume":"245","author":"C Maffei","year":"2021","unstructured":"Maffei, C., Lee, C., Planich, M., Ramprasad, M., Ravi, N., Trainor, D., Urban, Z., Kim, M., Jones, R. J., Henin, A., Hofmann, S. G., Pizzagalli, D. A., Auerbach, R. P., Gabrieli, J. D. E., Whitfield-Gabrieli, S., Greve, D. N., Haber, S. N., & Yendiki, A. (2021). Using diffusion MRI data acquired with ultra-high gradient strength to improve tractography in routine-quality data. NeuroImage, 245, 118706. https:\/\/doi.org\/10.1016\/j.neuroimage.2021.118706","journal-title":"NeuroImage"},{"key":"9686_CR98","doi-asserted-by":"publisher","first-page":"103294","DOI":"10.1016\/j.nicl.2022.103294","volume":"37","author":"C Maffei","year":"2023","unstructured":"Maffei, C., Gilmore, N., Snider, S. B., Foulkes, A. S., Bodien, Y. G., Yendiki, A., & Edlow, B. L. (2023). Automated detection of axonal damage along white matter tracts in acute severe traumatic brain injury. NeuroImage, 37, 103294. https:\/\/doi.org\/10.1016\/j.nicl.2022.103294","journal-title":"NeuroImage"},{"issue":"Pt 4","key":"9686_CR99","doi-asserted-by":"publisher","first-page":"932","DOI":"10.1093\/brain\/awv011","volume":"138","author":"C Mainero","year":"2015","unstructured":"Mainero, C., Louapre, C., Govindarajan, S. T., Giann\u00ec, C., Nielsen, A. S., Cohen-Adad, J., Sloane, J., & Kinkel, R. P. (2015). A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain, 138(Pt 4), 932\u2013945. https:\/\/doi.org\/10.1093\/brain\/awv011","journal-title":"Brain"},{"issue":"4","key":"9686_CR100","doi-asserted-by":"publisher","first-page":"046023","DOI":"10.1088\/1741-2552\/ab85b3","volume":"17","author":"SN Makarov","year":"2020","unstructured":"Makarov, S. N., Wartman, W. A., Daneshzand, M., Fujimoto, K., Raij, T., & Nummenmaa, A. (2020). A software toolkit for TMS electric-field modeling with boundary element fast multipole method: An efficient MATLAB implementation. Journal of Neural Engineering, 17(4), 046023. https:\/\/doi.org\/10.1088\/1741-2552\/ab85b3","journal-title":"Journal of Neural Engineering"},{"issue":"3","key":"9686_CR101","doi-asserted-by":"publisher","first-page":"L55","DOI":"10.1088\/0022-3719\/10\/3\/004","volume":"10","author":"P Mansfield","year":"1977","unstructured":"Mansfield, P. (1977). Multi-planar image formation using NMR spin echoes. Journal of Physics C: Solid State Physics, 10(3), L55. https:\/\/doi.org\/10.1088\/0022-3719\/10\/3\/004","journal-title":"Journal of Physics C: Solid State Physics"},{"issue":"6","key":"9686_CR102","doi-asserted-by":"publisher","first-page":"746","DOI":"10.1002\/mrm.1910290606","volume":"29","author":"P Mansfield","year":"1993","unstructured":"Mansfield, P., & Harvey, P. R. (1993). Limits to neural stimulation in echo-planar imaging. Magnetic Resonance in Medicine, 29(6), 746\u2013758. https:\/\/doi.org\/10.1002\/mrm.1910290606","journal-title":"Magnetic Resonance in Medicine"},{"issue":"5","key":"9686_CR103","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1167\/3.5.5","volume":"3","author":"SP McKee","year":"2003","unstructured":"McKee, S. P., Levi, D. M., & Movshon, J. A. (2003). The pattern of visual deficits in amblyopia. Journal of Vision, 3(5), 5\u20135. https:\/\/doi.org\/10.1167\/3.5.5","journal-title":"Journal of Vision"},{"key":"9686_CR104","doi-asserted-by":"publisher","first-page":"358","DOI":"10.1016\/j.neuroimage.2016.09.012","volume":"168","author":"S Nasr","year":"2018","unstructured":"Nasr, S., & Tootell, R. B. H. (2018). Visual field biases for near and far stimuli in disparity selective columns in human visual cortex. NeuroImage, 168, 358\u2013365. https:\/\/doi.org\/10.1016\/j.neuroimage.2016.09.012","journal-title":"NeuroImage"},{"issue":"6","key":"9686_CR105","doi-asserted-by":"publisher","first-page":"1841","DOI":"10.1523\/jneurosci.3518-15.2016","volume":"36","author":"S Nasr","year":"2016","unstructured":"Nasr, S., Polimeni, J. R., & Tootell, R. B. H. (2016). Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3. Journal of Neuroscience, 36(6), 1841\u20131857. https:\/\/doi.org\/10.1523\/jneurosci.3518-15.2016","journal-title":"Journal of Neuroscience"},{"key":"9686_CR106","doi-asserted-by":"publisher","unstructured":"Nasr, S., Skerswetat, J., Gaier, E. D., Malladi, S. N., Kennedy, B., Tootell, R. B. H., Bex, P., & Hunter, D. G. (2024). Using high-resolution functional MRI to differentiate impacts of strabismic and anisometropic amblyopia on evoked ocular dominance activity in humans. bioRxiv. https:\/\/doi.org\/10.1101\/2024.02.11.579855","DOI":"10.1101\/2024.02.11.579855"},{"key":"9686_CR107","doi-asserted-by":"publisher","first-page":"117355","DOI":"10.1016\/j.neuroimage.2020.117355","volume":"224","author":"LI Navarro de Lara","year":"2021","unstructured":"Navarro de Lara, L. I., Daneshzand, M., Mascarenas, A., Paulson, D., Pratt, K., Okada, Y., Raij, T., Makarov, S. N., & Nummenmaa, A. (2021). A 3-axis coil design for multichannel TMS arrays. NeuroImage, 224, 117355. https:\/\/doi.org\/10.1016\/j.neuroimage.2020.117355","journal-title":"NeuroImage"},{"issue":"4","key":"9686_CR108","doi-asserted-by":"publisher","first-page":"1021","DOI":"10.1016\/j.brs.2023.05.025","volume":"16","author":"LI Navarro de Lara","year":"2023","unstructured":"Navarro de Lara, L. I., Stockmann, J. P., Meng, Q., Keil, B., Mareyam, A., Ulu\u00e7, I., Daneshzand, M., Makarov, S., Wald, L. L., & Nummenmaa, A. (2023). A novel whole-head RF coil design tailored for concurrent multichannel brain stimulation and imaging at 3T. Brain Stimulation, 16(4), 1021\u20131031. https:\/\/doi.org\/10.1016\/j.brs.2023.05.025","journal-title":"Brain Stimulation"},{"key":"9686_CR109","doi-asserted-by":"publisher","unstructured":"Ng, S. Y., & Lee, A. Y. W. (2019). Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets [Review]. Frontiers in Cellular Neuroscience, 13. https:\/\/doi.org\/10.3389\/fncel.2019.00528","DOI":"10.3389\/fncel.2019.00528"},{"issue":"13","key":"9686_CR110","doi-asserted-by":"publisher","first-page":"5951","DOI":"10.1073\/pnas.89.13.5951","volume":"89","author":"S Ogawa","year":"1992","unstructured":"Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences, 89(13), 5951\u20135955. https:\/\/doi.org\/10.1073\/pnas.89.13.5951","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"9686_CR111","doi-asserted-by":"publisher","unstructured":"Oxenford, S., Roediger, J., Neudorfer, C., Milosevic, L., G\u00fcttler, C., Spindler, P., Vajkoczy, P., Neumann, W. J., K\u00fchn, A., & Horn, A. (2022). Lead-OR: A multimodal platform for deep brain stimulation surgery. eLife, 11. https:\/\/doi.org\/10.7554\/eLife.72929","DOI":"10.7554\/eLife.72929"},{"key":"9686_CR112","doi-asserted-by":"publisher","first-page":"116835","DOI":"10.1016\/j.neuroimage.2020.116835","volume":"215","author":"M Palombo","year":"2020","unstructured":"Palombo, M., Ianus, A., Guerreri, M., Nunes, D., Alexander, D. C., Shemesh, N., & Zhang, H. (2020). SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. NeuroImage, 215, 116835. https:\/\/doi.org\/10.1016\/j.neuroimage.2020.116835","journal-title":"NeuroImage"},{"issue":"2","key":"9686_CR113","doi-asserted-by":"publisher","first-page":"20120078","DOI":"10.1098\/rsfs.2012.0078","volume":"3","author":"CS Park","year":"2013","unstructured":"Park, C. S., & Payne, S. J. (2013). A generalized mathematical framework for estimating the residue function for arbitrary vascular networks. Interface Focus, 3(2), 20120078. https:\/\/doi.org\/10.1098\/rsfs.2012.0078","journal-title":"Interface Focus"},{"issue":"6","key":"9686_CR114","doi-asserted-by":"publisher","first-page":"1465","DOI":"10.1002\/mrm.20712","volume":"54","author":"LM Parkes","year":"2005","unstructured":"Parkes, L. M., Schwarzbach, J. V., Bouts, A. A., Deckers, R. H., Pullens, P., Kerskens, C. M., & Norris, D. G. (2005). Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla. Magnetic Resonance in Medicine, 54(6), 1465\u20131472. https:\/\/doi.org\/10.1002\/mrm.20712","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1387","key":"9686_CR115","doi-asserted-by":"publisher","first-page":"1229","DOI":"10.1098\/rstb.1999.0476","volume":"354","author":"A Pascual-Leone","year":"1999","unstructured":"Pascual-Leone, A., Bartres-Faz, D., & Keenan, J. P. (1999). Transcranial magnetic stimulation: Studying the brain-behaviour relationship by induction of \u201cvirtual lesions.\u201d Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1387), 1229\u20131238. https:\/\/doi.org\/10.1098\/rstb.1999.0476","journal-title":"Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences"},{"issue":"5","key":"9686_CR116","doi-asserted-by":"publisher","first-page":"569","DOI":"10.1038\/s41551-022-00849-7","volume":"6","author":"KB Patel","year":"2022","unstructured":"Patel, K. B., Liang, W., Casper, M. J., Voleti, V., Li, W., Yagielski, A. J., Zhao, H. T., Perez Campos, C., Lee, G. S., Liu, J. M., Philipone, E., Yoon, A. J., Olive, K. P., Coley, S. M., & Hillman, E. M. C. (2022). High-speed light-sheet microscopy for the in-situ acquisition of volumetric histological images of living tissue. Nature Biomedical Engineering, 6(5), 569\u2013583. https:\/\/doi.org\/10.1038\/s41551-022-00849-7","journal-title":"Nature Biomedical Engineering"},{"issue":"7112","key":"9686_CR117","doi-asserted-by":"publisher","first-page":"700","DOI":"10.1038\/nature05193","volume":"443","author":"CM Peppiatt","year":"2006","unstructured":"Peppiatt, C. M., Howarth, C., Mobbs, P., & Attwell, D. (2006). Bidirectional control of CNS capillary diameter by pericytes. Nature, 443(7112), 700\u2013704. https:\/\/doi.org\/10.1038\/nature05193","journal-title":"Nature"},{"issue":"1","key":"9686_CR118","doi-asserted-by":"publisher","first-page":"401","DOI":"10.1002\/mrm.26649","volume":"79","author":"D Polak","year":"2018","unstructured":"Polak, D., Setsompop, K., Cauley, S. F., Gagoski, B. A., Bhat, H., Maier, F., Bachert, P., Wald, L. L., & Bilgic, B. (2018). Wave-CAIPI for highly accelerated MP-RAGE imaging. Magnetic Resonance in Medicine, 79(1), 401\u2013406. https:\/\/doi.org\/10.1002\/mrm.26649","journal-title":"Magnetic Resonance in Medicine"},{"key":"9686_CR119","doi-asserted-by":"publisher","first-page":"102174","DOI":"10.1016\/j.pneurobio.2021.102174","volume":"207","author":"JR Polimeni","year":"2021","unstructured":"Polimeni, J. R., & Lewis, L. D. (2021). Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Progress in Neurobiology, 207, 102174. https:\/\/doi.org\/10.1016\/j.pneurobio.2021.102174","journal-title":"Progress in Neurobiology"},{"key":"9686_CR120","doi-asserted-by":"publisher","first-page":"250","DOI":"10.1016\/j.conb.2018.04.026","volume":"50","author":"JR Polimeni","year":"2018","unstructured":"Polimeni, J. R., & Wald, L. L. (2018). Magnetic Resonance Imaging technology-bridging the gap between noninvasive human imaging and optical microscopy. Current Opinion in Neurobiology, 50, 250\u2013260. https:\/\/doi.org\/10.1016\/j.conb.2018.04.026","journal-title":"Current Opinion in Neurobiology"},{"issue":"4","key":"9686_CR121","doi-asserted-by":"publisher","first-page":"1334","DOI":"10.1016\/j.neuroimage.2010.05.005","volume":"52","author":"JR Polimeni","year":"2010","unstructured":"Polimeni, J. R., Fischl, B., Greve, D. N., & Wald, L. L. (2010). Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. NeuroImage, 52(4), 1334\u20131346. https:\/\/doi.org\/10.1016\/j.neuroimage.2010.05.005","journal-title":"NeuroImage"},{"key":"9686_CR122","doi-asserted-by":"publisher","unstructured":"Poplawsky, A. J., Fukuda, M., Murphy, M., & Kim, S. G. (2015). Layer-Specific fMRI responses to excitatory and inhibitory neuronal activities in the olfactory bulb. The Journal of Neuroscience, 35(46), 15263. https:\/\/doi.org\/10.1523\/JNEUROSCI.1015-15.2015","DOI":"10.1523\/JNEUROSCI.1015-15.2015"},{"key":"9686_CR123","doi-asserted-by":"publisher","first-page":"657","DOI":"10.1016\/j.neuroimage.2017.08.046","volume":"197","author":"AJ Poplawsky","year":"2019","unstructured":"Poplawsky, A. J., Fukuda, M., Kang, B.-M., Kim, J. H., Suh, M., & Kim, S.-G. (2019). Dominance of layer-specific microvessel dilation in contrast-enhanced high-resolution fMRI: Comparison between hemodynamic spread and vascular architecture with CLARITY. NeuroImage, 197, 657\u2013667. https:\/\/doi.org\/10.1016\/j.neuroimage.2017.08.046","journal-title":"NeuroImage"},{"issue":"1","key":"9686_CR124","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1007\/s10334-006-0063-x","volume":"20","author":"BA Poser","year":"2007","unstructured":"Poser, B. A., & Norris, D. G. (2007). Fast spin echo sequences for BOLD functional MRI. Magma, 20(1), 11\u201317. https:\/\/doi.org\/10.1007\/s10334-006-0063-x","journal-title":"Magma"},{"key":"9686_CR125","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/j.neuroimage.2016.12.061","volume":"160","author":"MG Preti","year":"2017","unstructured":"Preti, M. G., Bolton, T. A. W., & Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage, 160, 41\u201354. https:\/\/doi.org\/10.1016\/j.neuroimage.2016.12.061","journal-title":"NeuroImage"},{"key":"9686_CR126","unstructured":"Proulx, S., Hodono, S., Varadarajan, D., Hu, Z., Cloos, M., & Polimeni, J. R. (2024) Using saturation bands to null signal from inflowing blood in single-slice fMRI: Toward a rapidly sampled black-blood functional contrast. Proceedings of the 33rd annual meeting of ISMRM. Singapore. 3409."},{"issue":"4","key":"9686_CR127","doi-asserted-by":"publisher","first-page":"896","DOI":"10.1016\/j.cell.2014.10.010","volume":"159","author":"N Renier","year":"2014","unstructured":"Renier, N., Wu, Z., Simon, D. J., Yang, J., Ariel, P., & Tessier-Lavigne, M. (2014). iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell., 159(4), 896\u2013910. https:\/\/doi.org\/10.1016\/j.cell.2014.10.010","journal-title":"Cell."},{"issue":"4","key":"9686_CR128","doi-asserted-by":"publisher","first-page":"e3941","DOI":"10.1002\/nbm.3941","volume":"32","author":"A Roebroeck","year":"2019","unstructured":"Roebroeck, A., Miller, K. L., & Aggarwal, M. (2019). Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances. NMR in Biomedicine, 32(4), e3941. https:\/\/doi.org\/10.1002\/nbm.3941","journal-title":"NMR in Biomedicine"},{"issue":"2","key":"9686_CR129","doi-asserted-by":"publisher","first-page":"1316","DOI":"10.1016\/j.neuroimage.2012.03.004","volume":"62","author":"BR Rosen","year":"2012","unstructured":"Rosen, B. R., & Savoy, R. L. (2012). fMRI at 20: Has it changed the world? NeuroImage, 62(2), 1316\u20131324. https:\/\/doi.org\/10.1016\/j.neuroimage.2012.03.004","journal-title":"NeuroImage"},{"issue":"2","key":"9686_CR130","doi-asserted-by":"publisher","first-page":"150","DOI":"10.1016\/j.pscychresns.2009.02.007","volume":"173","author":"M Sanches","year":"2009","unstructured":"Sanches, M., Caetano, S., Nicoletti, M., Monkul, E. S., Chen, H. H., Hatch, J. P., Yeh, P. H., Mullis, R. L., Keshavan, M. S., Rajowska, G., & Soares, J. C. (2009). An MRI-based approach for the measurement of the dorsolateral prefrontal cortex in humans. Psychiatry Research, 173(2), 150\u2013154. https:\/\/doi.org\/10.1016\/j.pscychresns.2009.02.007","journal-title":"Psychiatry Research"},{"issue":"9","key":"9686_CR131","doi-asserted-by":"publisher","first-page":"1198","DOI":"10.1038\/s41593-021-00904-7","volume":"24","author":"S Schaeffer","year":"2021","unstructured":"Schaeffer, S., & Iadecola, C. (2021). Revisiting the neurovascular unit. Nature Neuroscience, 24(9), 1198\u20131209. https:\/\/doi.org\/10.1038\/s41593-021-00904-7","journal-title":"Nature Neuroscience"},{"issue":"1","key":"9686_CR132","doi-asserted-by":"publisher","first-page":"5572","DOI":"10.1038\/s41467-023-41261-2","volume":"14","author":"ES Schaffer","year":"2023","unstructured":"Schaffer, E. S., Mishra, N., Whiteway, M. R., Li, W., Vancura, M. B., Freedman, J., Patel, K. B., Voleti, V., Paninski, L., Hillman, E. M. C., Abbott, L. F., & Axel, R. (2023). The spatial and temporal structure of neural activity across the fly brain. Nature Communications, 14(1), 5572. https:\/\/doi.org\/10.1038\/s41467-023-41261-2","journal-title":"Nature Communications"},{"issue":"5","key":"9686_CR133","doi-asserted-by":"publisher","first-page":"1210","DOI":"10.1002\/mrm.23097","volume":"67","author":"K Setsompop","year":"2012","unstructured":"Setsompop, K., Gagoski, B. A., Polimeni, J. R., Witzel, T., Wedeen, V. J., & Wald, L. L. (2012). Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magnetic Resonance in Medicine, 67(5), 1210\u20131224. https:\/\/doi.org\/10.1002\/mrm.23097","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1","key":"9686_CR134","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1002\/mrm.26653","volume":"79","author":"K Setsompop","year":"2018","unstructured":"Setsompop, K., Fan, Q., Stockmann, J., Bilgic, B., Huang, S., Cauley, S. F., Nummenmaa, A., Wang, F., Rathi, Y., Witzel, T., & Wald, L. L. (2018). High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider-SMS). Magnetic Resonance in Medicine, 79(1), 141\u2013151. https:\/\/doi.org\/10.1002\/mrm.26653","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1","key":"9686_CR135","doi-asserted-by":"publisher","first-page":"5442","DOI":"10.1038\/s41467-022-33010-8","volume":"13","author":"B Setzer","year":"2022","unstructured":"Setzer, B., Fultz, N. E., Gomez, D. E. P., Williams, S. D., Bonmassar, G., Polimeni, J. R., & Lewis, L. D. (2022). A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state. Nature Communications, 13(1), 5442. https:\/\/doi.org\/10.1038\/s41467-022-33010-8","journal-title":"Nature Communications"},{"issue":"6","key":"9686_CR136","doi-asserted-by":"publisher","first-page":"1841","DOI":"10.1523\/JNEUROSCI.3518-15.2016","volume":"36","author":"N Shahin","year":"2016","unstructured":"Shahin, N., Jonathan, R. P., & Roger, B. H. T. (2016). Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3. The Journal of Neuroscience, 36(6), 1841. https:\/\/doi.org\/10.1523\/JNEUROSCI.3518-15.2016","journal-title":"The Journal of Neuroscience"},{"issue":"6","key":"9686_CR137","doi-asserted-by":"publisher","first-page":"112527","DOI":"10.1016\/j.celrep.2023.112527","volume":"42","author":"S Shahsavarani","year":"2023","unstructured":"Shahsavarani, S., Thibodeaux, D. N., Xu, W., Kim, S. H., Lodgher, F., Nwokeabia, C., Cambareri, M., Yagielski, A. J., Zhao, H. T., Handwerker, D. A., Gonzalez-Castillo, J., Bandettini, P. A., & Hillman, E. M. C. (2023). Cortex-wide neural dynamics predict behavioral states and provide a neural basis for resting-state dynamic functional connectivity. Cell Reports, 42(6), 112527. https:\/\/doi.org\/10.1016\/j.celrep.2023.112527","journal-title":"Cell Reports"},{"key":"9686_CR138","doi-asserted-by":"publisher","unstructured":"Siebner, H. R., Funke, K., Aberra, A. S., Antal, A., Bestmann, S., Chen, R., Classen, J., Davare, M., Di Lazzaro, V., Fox, P. T., Hallett, M., Karabanov, A. N., Kesselheim, J., Beck, M. M., Koch, G., Liebetanz, D., Meunier, S., Miniussi, C., Paulus, W., ... Ugawa, Y. (2022). Transcranial magnetic stimulation of the brain: What is stimulated? \u2013 A consensus and critical position paper. Clinical Neurophysiology, 140, 59\u201397. https:\/\/doi.org\/10.1016\/j.clinph.2022.04.022","DOI":"10.1016\/j.clinph.2022.04.022"},{"issue":"6","key":"9686_CR139","doi-asserted-by":"publisher","first-page":"1110","DOI":"10.1002\/mrm.21246","volume":"57","author":"AC Silva","year":"2007","unstructured":"Silva, A. C., Koretsky, A. P., & Duyn, J. H. (2007). Functional MRI impulse response for BOLD and CBV contrast in rat somatosensory cortex. Magnetic Resonance in Medicine, 57(6), 1110\u20131118. https:\/\/doi.org\/10.1002\/mrm.21246","journal-title":"Magnetic Resonance in Medicine"},{"issue":"13","key":"9686_CR140","doi-asserted-by":"publisher","first-page":"1281","DOI":"10.1212\/WNL.0000000000008163","volume":"93","author":"SB Snider","year":"2019","unstructured":"Snider, S. B., Bodien, Y. G., Bianciardi, M., Brown, E. N., Wu, O., & Edlow, B. L. (2019). Disruption of the ascending arousal network in acute traumatic disorders of consciousness. Neurology, 93(13), 1281\u20131287. https:\/\/doi.org\/10.1212\/WNL.0000000000008163","journal-title":"Neurology"},{"key":"9686_CR141","doi-asserted-by":"publisher","first-page":"770","DOI":"10.1016\/j.psychres.2018.12.041","volume":"273","author":"AI Sonmez","year":"2019","unstructured":"Sonmez, A. I., Camsari, D. D., Nandakumar, A. L., Voort, J. L. V., Kung, S., Lewis, C. P., & Croarkin, P. E. (2019). Accelerated TMS for Depression: A systematic review and meta-analysis. Psychiatry Research, 273, 770\u2013781. https:\/\/doi.org\/10.1016\/j.psychres.2018.12.041","journal-title":"Psychiatry Research"},{"issue":"11","key":"9686_CR142","doi-asserted-by":"publisher","first-page":"1709","DOI":"10.1038\/nprot.2015.085","volume":"10","author":"EA Susaki","year":"2015","unstructured":"Susaki, E. A., Tainaka, K., Perrin, D., Yukinaga, H., Kuno, A., & Ueda, H. R. (2015). Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nature Protocols, 10(11), 1709\u20131727. https:\/\/doi.org\/10.1038\/nprot.2015.085","journal-title":"Nature Protocols"},{"key":"9686_CR143","doi-asserted-by":"publisher","unstructured":"Thengone, D. J., Voss, H., Fridman, E. A., Schiff, N. D. (2016). Local changes in network structure contribute to late communication recovery after sever brain injury. Science Translational Medicine, 8(368). https:\/\/doi.org\/10.1126\/scitranslmed.aaf6113","DOI":"10.1126\/scitranslmed.aaf6113"},{"key":"9686_CR144","doi-asserted-by":"crossref","unstructured":"Thielscher, A., Antunes, A., & Saturnino, G. B. (2015). Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","DOI":"10.1109\/EMBC.2015.7318340"},{"issue":"2","key":"9686_CR145","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1016\/0304-4165(82)90333-6","volume":"714","author":"KR Thulborn","year":"1982","unstructured":"Thulborn, K. R., Waterton, J. C., Matthews, P. M., & Radda, G. K. (1982). Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochimica Et Biophysica Acta, 714(2), 265\u2013270. https:\/\/doi.org\/10.1016\/0304-4165(82)90333-6","journal-title":"Biochimica Et Biophysica Acta"},{"issue":"7","key":"9686_CR146","doi-asserted-by":"publisher","first-page":"1682","DOI":"10.1038\/nprot.2014.123","volume":"9","author":"R Tomer","year":"2014","unstructured":"Tomer, R., Ye, L., Hsueh, B., & Deisseroth, K. (2014). Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nature Protocols, 9(7), 1682\u20131697. https:\/\/doi.org\/10.1038\/nprot.2014.123","journal-title":"Nature Protocols"},{"issue":"1","key":"9686_CR147","doi-asserted-by":"publisher","first-page":"20960","DOI":"10.1038\/s41598-021-99578-1","volume":"11","author":"RBH Tootell","year":"2021","unstructured":"Tootell, R. B. H., Zapetis, S. L., Babadi, B., Nasiriavanaki, Z., Hughes, D. E., Mueser, K., Otto, M., Pace-Schott, E., & Holt, D. J. (2021). Psychological and physiological evidence for an initial \u2018Rough Sketch\u2019 calculation of personal space. Scientific Reports, 11(1), 20960. https:\/\/doi.org\/10.1038\/s41598-021-99578-1","journal-title":"Scientific Reports"},{"issue":"48","key":"9686_CR148","doi-asserted-by":"publisher","first-page":"9011","DOI":"10.1523\/jneurosci.0516-22.2022","volume":"42","author":"RBH Tootell","year":"2022","unstructured":"Tootell, R. B. H., Nasiriavanaki, Z., Babadi, B., Greve, D. N., Nasr, S., & Holt, D. J. (2022). Interdigitated Columnar Representation of Personal Space and Visual Space in Human Parietal Cortex. Journal of Neuroscience, 42(48), 9011\u20139029. https:\/\/doi.org\/10.1523\/jneurosci.0516-22.2022","journal-title":"Journal of Neuroscience"},{"issue":"46","key":"9686_CR149","doi-asserted-by":"publisher","first-page":"14553","DOI":"10.1523\/JNEUROSCI.3287-09.2009","volume":"29","author":"PS Tsai","year":"2009","unstructured":"Tsai, P. S., Kaufhold, J. P., Blinder, P., Friedman, B., Drew, P. J., Karten, H. J., Lyden, P. D., & Kleinfeld, D. (2009). Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuceli and vessels. Journal of Neuroscience, 29(46), 14553. https:\/\/doi.org\/10.1523\/JNEUROSCI.3287-09.2009","journal-title":"Journal of Neuroscience"},{"issue":"8","key":"9686_CR150","doi-asserted-by":"publisher","first-page":"519","DOI":"10.1016\/j.euroneuro.2010.03.008","volume":"20","author":"MP van den Heuvel","year":"2010","unstructured":"van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519\u2013534. https:\/\/doi.org\/10.1016\/j.euroneuro.2010.03.008","journal-title":"European Neuropsychopharmacology"},{"issue":"5","key":"9686_CR151","doi-asserted-by":"publisher","first-page":"708","DOI":"10.1016\/j.ejrad.2011.07.007","volume":"82","author":"AG van der Kolk","year":"2013","unstructured":"van der Kolk, A. G., Hendrikse, J., Zwanenburg, J. J., Visser, F., & Luijten, P. R. (2013). Clinical applications of 7 T MRI in the brain. European Journal of Radiology, 82(5), 708\u2013718. https:\/\/doi.org\/10.1016\/j.ejrad.2011.07.007","journal-title":"European Journal of Radiology"},{"key":"9686_CR152","doi-asserted-by":"crossref","unstructured":"Varadarajan, D., Wighton, P., Chen, J., Proulx, S., Frost, R., van der Kouwe, A., Berman, A., & Polimen, J. (2023). Measuring individual vein and artery BOLD responses to visual stimuli in humans with multi-echo single-vessel functional MRI at 7T. Proceedings of the 33rd annual meeting of ISMRM. Singapore. 3663.","DOI":"10.58530\/2023\/3663"},{"issue":"10","key":"9686_CR153","doi-asserted-by":"publisher","first-page":"1054","DOI":"10.1038\/s41592-019-0579-4","volume":"16","author":"V Voleti","year":"2019","unstructured":"Voleti, V., Patel, K. B., Li, W., Perez Campos, C., Bharadwaj, S., Yu, H., Ford, C., Casper, M. J., Yan, R. W., Liang, W., Wen, C., Kimura, K. D., Targoff, K. L., & Hillman, E. M. C. (2019). Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nature Methods, 16(10), 1054\u20131062. https:\/\/doi.org\/10.1038\/s41592-019-0579-4","journal-title":"Nature Methods"},{"key":"9686_CR154","doi-asserted-by":"publisher","first-page":"1007","DOI":"10.1016\/j.neuroimage.2013.09.063","volume":"84","author":"H Wang","year":"2014","unstructured":"Wang, H., Zhu, J., & Akkin, T. (2014). Serial optical coherence scanner for large-scale brain imaging at microscopic resolution. NeuroImage, 84, 1007\u20131017. https:\/\/doi.org\/10.1016\/j.neuroimage.2013.09.063","journal-title":"NeuroImage"},{"key":"9686_CR155","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.neuroimage.2017.10.012","volume":"165","author":"H Wang","year":"2018","unstructured":"Wang, H., Magnain, C., Wang, R., Dubb, J., Varjabedian, A., Tirrell, L. S., Stevens, A., Augustinack, J. C., Konukoglu, E., Aganj, I., Frosch, M. P., Schmahmann, J. D., Fischl, B., & Boas, D. A. (2018). as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity. NeuroImage, 165, 56\u201368. https:\/\/doi.org\/10.1016\/j.neuroimage.2017.10.012","journal-title":"NeuroImage"},{"issue":"1","key":"9686_CR156","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1038\/s41597-021-00904-z","volume":"8","author":"F Wang","year":"2021","unstructured":"Wang, F., Dong, Z., Tian, Q., Liao, C., Fan, Q., Hoge, W. S., Keil, B., Polimeni, J. R., Wald, L. L., Huang, S. Y., & Setsompop, K. (2021). In vivo human whole-brain Connectom diffusion MRI dataset at 760 \u00b5m isotropic resolution. Scientific Data, 8(1), 122. https:\/\/doi.org\/10.1038\/s41597-021-00904-z","journal-title":"Scientific Data"},{"key":"9686_CR157","unstructured":"Wang, J., Ma, Y., Liu. Y., Lin, L., Berman, A. J. L., Bollmann, S., Polimeni, J., & Roe, A. W. (2024) Imaging small intracortical blood vessels at 64 um in-plane resolution in macaque monkey brain in vivo using a large-bore 7T MRI scanner. Proceedings of the 33rd annual meeting of ISMRM. Singapore. 1130."},{"issue":"10","key":"9686_CR158","doi-asserted-by":"publisher","first-page":"2318","DOI":"10.1093\/cercor\/bhm259","volume":"18","author":"B Weber","year":"2008","unstructured":"Weber, B., Keller, A. L., Reichold, J., & Logothetis, N. K. (2008). The microvascular system of the striate and extrastriate visual cortex of the macaque. Cerebral Cortex., 18(10), 2318. https:\/\/doi.org\/10.1093\/cercor\/bhm259","journal-title":"Cerebral Cortex."},{"issue":"8","key":"9686_CR159","doi-asserted-by":"publisher","first-page":"570","DOI":"10.1038\/s42254-021-00326-1","volume":"3","author":"N Weiskopf","year":"2021","unstructured":"Weiskopf, N., Edwards, L. J., Helms, G., Mohammadi, S., & Kirilina, E. (2021). Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nature Reviews Physics, 3(8), 570\u2013588. https:\/\/doi.org\/10.1038\/s42254-021-00326-1","journal-title":"Nature Reviews Physics"},{"issue":"1","key":"9686_CR160","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1002\/mrm.20547","volume":"54","author":"CG Wiggins","year":"2005","unstructured":"Wiggins, C. G., Potthast, A., Triantafyllou, C., Wiggins, C. J., & Wald, L. L. (2005). Eight-channel phased array coil and detonable TEM volume coil for 7T brain imaging. Magnetic Resonance in Medicine., 54(1), 235\u2013240. https:\/\/doi.org\/10.1002\/mrm.20547","journal-title":"Magnetic Resonance in Medicine."},{"issue":"12","key":"9686_CR161","doi-asserted-by":"publisher","first-page":"110978","DOI":"10.1016\/j.celrep.2022.110978","volume":"39","author":"Y Wu","year":"2022","unstructured":"Wu, Y., Bennett, H. C., Chon, U., Vanselow, D. J., Zhang, Q., Mu\u00f1oz-Casta\u00f1eda, R., Cheng, K. C., Osten, P., Drew, P. J., & Kim, Y. (2022). Quantitative relationship between cerebrovascular network and neuronal cell types in mice. Cell Reports, 39(12), 110978. https:\/\/doi.org\/10.1016\/j.celrep.2022.110978","journal-title":"Cell Reports"},{"issue":"13","key":"9686_CR162","doi-asserted-by":"publisher","first-page":"7603","DOI":"10.1073\/pnas.97.13.7603","volume":"97","author":"DA Yablonskiy","year":"2000","unstructured":"Yablonskiy, D. A., Ackerman, J. J. H., & Raichle, M. E. (2000). Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. Proceedings of the National Academy of Sciences, 97(13), 7603\u20137608. https:\/\/doi.org\/10.1073\/pnas.97.13.7603","journal-title":"Proceedings of the National Academy of Sciences"},{"issue":"4","key":"9686_CR163","doi-asserted-by":"publisher","first-page":"655","DOI":"10.1002\/mrm.10433","volume":"49","author":"E Yacoub","year":"2003","unstructured":"Yacoub, E., Duong, T. Q., Van De Moortele, P. F., Lindquist, M., Adriany, G., Kim, S. G., U\u011furbil, K., & Hu, X. (2003). Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magnetic Resonance in Medicine, 49(4), 655\u2013664. https:\/\/doi.org\/10.1002\/mrm.10433","journal-title":"Magnetic Resonance in Medicine"},{"issue":"3","key":"9686_CR164","doi-asserted-by":"publisher","first-page":"738","DOI":"10.1016\/j.neuroimage.2004.09.002","volume":"24","author":"E Yacoub","year":"2005","unstructured":"Yacoub, E., Van De Moortele, P.-F., Shmuel, A., & U\u011furbil, K. (2005). Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans. NeuroImage, 24(3), 738\u2013750. https:\/\/doi.org\/10.1016\/j.neuroimage.2004.09.002","journal-title":"NeuroImage"},{"issue":"4","key":"9686_CR165","doi-asserted-by":"publisher","first-page":"1161","DOI":"10.1016\/j.neuroimage.2007.05.020","volume":"37","author":"E Yacoub","year":"2007","unstructured":"Yacoub, E., Shmuel, A., Logothetis, N., & U\u011furbil, K. (2007). Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. NeuroImage, 37(4), 1161\u20131177. https:\/\/doi.org\/10.1016\/j.neuroimage.2007.05.020","journal-title":"NeuroImage"},{"issue":"3","key":"9686_CR166","doi-asserted-by":"publisher","first-page":"518","DOI":"10.1002\/mrm.10720","volume":"51","author":"F Zhao","year":"2004","unstructured":"Zhao, F., Wang, P., & Kim, S. G. (2004). Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4T. Magnetic Resonance in Medicine, 51(3), 518\u2013524. https:\/\/doi.org\/10.1002\/mrm.10720","journal-title":"Magnetic Resonance in Medicine"}],"container-title":["Neuroinformatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12021-024-09686-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12021-024-09686-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12021-024-09686-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T08:53:32Z","timestamp":1732092812000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12021-024-09686-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9,23]]},"references-count":166,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2024,10]]}},"alternative-id":["9686"],"URL":"https:\/\/doi.org\/10.1007\/s12021-024-09686-2","relation":{},"ISSN":["1559-0089"],"issn-type":[{"type":"electronic","value":"1559-0089"}],"subject":[],"published":{"date-parts":[[2024,9,23]]},"assertion":[{"value":"20 August 2024","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 September 2024","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing Interests"}}]}}