{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T06:43:20Z","timestamp":1727073800794},"reference-count":49,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2021,11,7]],"date-time":"2021-11-07T00:00:00Z","timestamp":1636243200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,11,7]],"date-time":"2021-11-07T00:00:00Z","timestamp":1636243200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"name":"Department of Biotechnology, India","award":["BT\/PR16356\/BID\/7\/596\/2016"]},{"DOI":"10.13039\/501100004281","name":"Polish National Science Centre","doi-asserted-by":"crossref","award":["2017\/26\/E\/NZ4\/00637"],"id":[{"id":"10.13039\/501100004281","id-type":"DOI","asserted-by":"crossref"}]},{"name":"CSIR SRF Direct Fellowship, India","award":["09|096(0921)2K18 EMR-I"]},{"DOI":"10.13039\/501100004281","name":"Polish National Science Centre","doi-asserted-by":"crossref","award":["UMO-2017\/27\/N\/NZ3\/02417"],"id":[{"id":"10.13039\/501100004281","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001870","name":"Foundation for Polish Science","doi-asserted-by":"crossref","award":["POIR.04.04.00-00-43BC\/17-00"],"id":[{"id":"10.13039\/501100001870","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100004281","name":"Polish National Science Centre","doi-asserted-by":"crossref","award":["2019\/35\/O\/ST6\/02484, 2014\/15\/B\/ST6\/05082"],"id":[{"id":"10.13039\/501100004281","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Deutsche Forschungsgemeinschaft Grant","award":["PO732"]},{"name":"Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund"},{"name":"National Institute of Health, USA","award":["1U54DK107967-01"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neuroinform"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1007\/s12021-021-09549-0","type":"journal-article","created":{"date-parts":[[2021,11,7]],"date-time":"2021-11-07T07:02:33Z","timestamp":1636268553000},"page":"679-698","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["3dSpAn: An interactive software for 3D segmentation and analysis of dendritic spines"],"prefix":"10.1007","volume":"20","author":[{"given":"Nirmal","family":"Das","sequence":"first","affiliation":[]},{"given":"Ewa","family":"Baczynska","sequence":"additional","affiliation":[]},{"given":"Monika","family":"Bijata","sequence":"additional","affiliation":[]},{"given":"Blazej","family":"Ruszczycki","sequence":"additional","affiliation":[]},{"given":"Andre","family":"Zeug","sequence":"additional","affiliation":[]},{"given":"Dariusz","family":"Plewczynski","sequence":"additional","affiliation":[]},{"given":"Punam Kumar","family":"Saha","sequence":"additional","affiliation":[]},{"given":"Evgeni","family":"Ponimaskin","sequence":"additional","affiliation":[]},{"given":"Jakub","family":"Wlodarczyk","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1780-0461","authenticated-orcid":false,"given":"Subhadip","family":"Basu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,7]]},"reference":[{"key":"9549_CR1","doi-asserted-by":"crossref","unstructured":"Argunsah, A. O., Erdil, E., Ghani, M. U., Cortes, Y. R., Hobbiss, A. F., & Karayannis, T., Cetin, M., Israely, I., & Unay, D. (2020). SpineS: An interactive time-series analysis software for dendritic spines. bioRxiv.","DOI":"10.1101\/2020.09.12.294546"},{"key":"9549_CR2","doi-asserted-by":"crossref","unstructured":"Baczynska, E., Pels, K. K., Basu, S., W\u0142odarczyk, J., & Ruszczycki, B. (2021). Quantification of Dendritic Spines Remodeling under Physiological Stimuli and in Pathological Conditions. International Journal of Molecular Sciences, 22(8), 4053.","DOI":"10.3390\/ijms22084053"},{"issue":"1","key":"9549_CR3","first-page":"1","volume":"8","author":"S Basu","year":"2018","unstructured":"Basu, S., Saha, P. K., Roszkowska, M., Magnowska, M., Baczynska, E., Das, N., et al. (2018). Quantitative 3-D morphometric analysis of individual dendritic spines. Scientific Reports, 8(1), 1\u201313.","journal-title":"Scientific Reports"},{"key":"9549_CR4","doi-asserted-by":"crossref","unstructured":"Berry, K. P., & Nedivi, E. (2017). Spine dynamics: are they all the same?. International Journal of Molecular Sciences, 96(1), 43-55.","DOI":"10.1016\/j.neuron.2017.08.008"},{"issue":"8","key":"9549_CR5","doi-asserted-by":"publisher","first-page":"807","DOI":"10.1145\/358198.358222","volume":"27","author":"DRK Brownrigg","year":"1984","unstructured":"Brownrigg, D. R. K. (1984). The Weighted Median Filter. Communications of the ACM, 27(8), 807\u2013818.","journal-title":"Communications of the ACM"},{"issue":"7","key":"9549_CR6","doi-asserted-by":"publisher","first-page":"478","DOI":"10.1038\/nrn3258","volume":"13","author":"P Caroni","year":"2012","unstructured":"Caroni, P., Donato, F., & Muller, D. (2012). Structural plasticity upon learning: regulation and functions. Nature Reviews Neuroscience, 13(7), 478\u2013490.","journal-title":"Nature Reviews Neuroscience"},{"key":"9549_CR7","doi-asserted-by":"crossref","unstructured":"Chidambaram, S. B.,; Rathipriya, A. G., Bolla, S. R., Bhat, A., Ray, B., Mahalakshmi, A. M., Manivasagam, T., Thenmozhi, A. J., Essa, M. M., Guillemin, G. J., Chandra, R., & Sakharkar, M. K. (2019). Dendritic spines: Revisiting the physiological role. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 92, 161\u2013193.","DOI":"10.1016\/j.pnpbp.2019.01.005"},{"key":"9549_CR8","doi-asserted-by":"crossref","unstructured":"Choi, J., Lee, S. E., Cho, E., Kashiwagi, Y., Okabe, S., Chang, S., & Jeong, W. K. (2019). Interactive dendritic spine analysis based on 3D morphological features. In 2019 IEEE Visualization Conference (VIS) (pp. 171\u2013175). IEEE.","DOI":"10.1109\/VISUAL.2019.8933795"},{"key":"9549_CR9","doi-asserted-by":"crossref","unstructured":"Chow, D. K., Groszer, M., Pribadi, M., Machniki, M., Carmichael, S. T., Liu, X., & Trachtenberg, J. T. (2009). Laminar and compartmental regulation of dendritic growth in mature cortex. Nature neuroscience, 12(2), 116-118.","DOI":"10.1038\/nn.2255"},{"issue":"2","key":"9549_CR10","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1006\/nlme.1996.0049","volume":"66","author":"TA Comery","year":"1996","unstructured":"Comery, T. A., Stamoudis, C. X., Irwin, S. A., & Greenough, W. T. (1996). Increased density of multiple-head dendritic spines on medium-sized spiny neurons of the striatum in rats reared in a complex environment. Neurobiology of Learning and Memory, 66(2), 93\u201396.","journal-title":"Neurobiology of Learning and Memory"},{"issue":"10","key":"9549_CR11","doi-asserted-by":"publisher","first-page":"1037","DOI":"10.1038\/s41592-019-0539-z","volume":"16","author":"MK Driscoll","year":"2019","unstructured":"Driscoll, M. K., Welf, E. S., Jamieson, A. R., Dean, K. M., Isogai, T., Fiolka, R., & Danuser, G. (2019). Robust and automated detection of subcellular morphological motifs in 3D microscopy images. Nature methods, 16(10), 1037\u20131044.","journal-title":"Nature methods"},{"key":"9549_CR12","doi-asserted-by":"crossref","unstructured":"Edril, E., Argunsah, A. O., Tasdizen, T., Unay, D., & Cetin, M. A. (2015). joint classification and segmentation approach for dendritic spine segmentation in 2-photon microscopy images in IEEE 12th International Symposium on Biomedical Imaging (ISBI), 797-800.","DOI":"10.1109\/ISBI.2015.7163992"},{"key":"9549_CR13","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1016\/S0165-0173(02)00158-3","volume":"39","author":"JC Fiala","year":"2002","unstructured":"Fiala, J. C., Spacek, J., & Harris, K. M. (2002). Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research Reviews, 39, 29\u201354.","journal-title":"Brain Research Reviews"},{"key":"9549_CR14","doi-asserted-by":"crossref","unstructured":"Forrest, M. P., Parnell, E., & Penzes, P. (2018). Quantitative 3-D morphometric analysis of individual dendritic spines. Nature Reviews Neuroscience, 19.","DOI":"10.1038\/nrn.2018.16"},{"key":"9549_CR15","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1016\/j.neuroscience.2012.04.044","volume":"251","author":"JR Glausier","year":"2013","unstructured":"Glausier, J. R., & Lewis, D. A. (2013). Dendritic spine pathology in schizophrenia. Neuroscience, 251, 90\u2013107.","journal-title":"Neuroscience"},{"key":"9549_CR16","doi-asserted-by":"crossref","unstructured":"Gribbon, K. T., & Bailey, D. G. (2004). A novel approach to real-time bilinear interpolation. In Proceedings, DELTA 2004 - Second IEEE International Workshop on Electronic Design, Test and Applications, 126\u2013131.","DOI":"10.1109\/DELTA.2004.10055"},{"key":"9549_CR17","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1146\/annurev.ne.17.030194.002013","volume":"17","author":"KM Harris","year":"1994","unstructured":"Harris, K. M., & Kater, S. B. (1994). Dendritic Spines: Cellular Specializations Imparting Both Stability and Flexibility to Synaptic Function. Annual Review of Neuroscience, 17, 341\u2013371.","journal-title":"Annual Review of Neuroscience"},{"key":"9549_CR18","doi-asserted-by":"crossref","unstructured":"Hering, H., & Sheng, M. (2001). Dentritic spines: structure, dynamics and regulation. Nature Reviews Neuroscience, 2.","DOI":"10.1038\/35104061"},{"key":"9549_CR19","doi-asserted-by":"crossref","unstructured":"Holtmaat, A., de Paola, V., Wilbrecht, L., Trachtenberg, J. T., Svoboda, K., Portera-Cailliau, C. (2001). Imaging neocortical neurons through a chronic cranial window. Cold Spring Harbor Protocols, 2012, pdb\u2013prot069617.","DOI":"10.1101\/pdb.prot069617"},{"key":"9549_CR20","doi-asserted-by":"crossref","unstructured":"Kashiwagi, Y., Higashi, T., Obashi, K., Sato, Y., Komiyama, N. H., Grant, S. G. N., & Okabe, S. (2019). Computational geometry analysis of dendritic spines by structured illumination microscopy. Nature communications, 10, 14.","DOI":"10.1038\/s41467-019-09337-0"},{"key":"9549_CR21","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1016\/j.jneumeth.2007.01.016","volume":"162","author":"BG Kim","year":"2007","unstructured":"Kim, B. G., Dai, H., McAtee, M., Vicini, S., & Bregman, B. S. (2007). Labeling of dendritic spines with the carbocyanine dye DiI for confocal microscopic imaging in lightly fixed cortical slices. Journal of neuroscience methods, 162, 237\u2013243.","journal-title":"Journal of neuroscience methods"},{"key":"9549_CR22","doi-asserted-by":"publisher","first-page":"1726","DOI":"10.3390\/ijms20071726","volume":"20","author":"A Krzystyniak","year":"2019","unstructured":"Krzystyniak, A., Baczynska, E., Magnowska, M., Antoniuk, S., Roszkowska, M., Zareba-Koziol, M., et al. (2019). Prophylactic Ketamine Treatment Promotes Resilience to Chronic Stress and Accelerates Recovery: Correlation with Changes in Synaptic Plasticity in the CA3 Subregion of the Hippocampus. International Journal of Molecular Sciences, 20, 1726.","journal-title":"International Journal of Molecular Sciences"},{"key":"9549_CR23","doi-asserted-by":"publisher","DOI":"10.1155\/2012\/704103","volume-title":"Examining form and function of dendritic spines","author":"KFH Lee","year":"2012","unstructured":"Lee, K. F. H., Cary, S., & B\u00e9\u00efque, J. C. (2012). Examining form and function of dendritic spines. In Neural Plasticity: Hindawi Publishing Corporation."},{"key":"9549_CR24","first-page":"e53528","volume":"109","author":"K \u0141ukasiewicz","year":"2016","unstructured":"\u0141ukasiewicz, K., Robacha, M., Bo\u017cycki, \u0141, Radwanska, K., & Czajkowski, R. (2016). Simultaneous two-photon in vivo imaging of synaptic inputs and postsynaptic targets in the mouse retrosplenial cortex. Journal of Visualized Experiments, 109, e53528.","journal-title":"Journal of Visualized Experiments"},{"key":"9549_CR25","doi-asserted-by":"publisher","first-page":"27757","DOI":"10.1038\/srep27757","volume":"6","author":"M Magnowska","year":"2016","unstructured":"Magnowska, M., Gorkiewicz, T., Suska, A., Wawrzyniak, M., Rutkowska-Wlodarczyk, I., Kaczmarek, L., & Wlodarczyk, J. (2016). Transient ECM protease activity promotes synaptic plasticity. Scientific reports, 6, 27757.","journal-title":"Scientific reports"},{"key":"9549_CR26","doi-asserted-by":"publisher","first-page":"130","DOI":"10.3389\/fnana.2014.00130","volume":"8","author":"JJ Mancuso","year":"2014","unstructured":"Mancuso, J. J., Cheng, J., Yin, Z., Gilliam, J. C., Xia, X., Li, X., & Wong, S. T. C. (2014). Integration of multiscale dendritic spine structure andfunction data into systems biology models. Frontiers in Neuroanatomy, 8, 130.","journal-title":"Frontiers in Neuroanatomy"},{"key":"9549_CR27","doi-asserted-by":"crossref","unstructured":"Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R., & Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature, 429, 761\u2013766.","DOI":"10.1038\/nature02617"},{"key":"9549_CR28","doi-asserted-by":"crossref","unstructured":"Okabe, S. (2020). Recent advances in computational methods for measurement of dendritic spines imaged by light microscopy. Microscopy, 69, 196-213.","DOI":"10.1093\/jmicro\/dfaa016"},{"key":"9549_CR29","doi-asserted-by":"publisher","unstructured":"Ozgur et al. (2020). biorxiv -\u00a0https:\/\/www.biorxiv.org\/content\/10.1101\/2020.09.12.294546v1. https:\/\/doi.org\/10.1101\/2020.09.12.294546","DOI":"10.1101\/2020.09.12.294546"},{"key":"9549_CR30","unstructured":"Qt Cross-platform software development for embedded and desktop. https:\/\/www.qt.io\/. Accessed On: 05-11-2019."},{"key":"9549_CR31","doi-asserted-by":"crossref","unstructured":"Richards, D. A., Mateos, J. M., Hugel, S., de Paola, V., Caroni, P., G\u00e4hwiler, B. H., & McKinney, R. A. (2005). Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proceedings of the National Academy of Sciences, 102.","DOI":"10.1073\/pnas.0501881102"},{"key":"9549_CR32","doi-asserted-by":"crossref","unstructured":"Rodriguez, A., Ehlenberger, D. B., Hof, P. R., Wearne, S. L. (2019). Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. Nature Protocols, 2152-2161.","DOI":"10.1038\/nprot.2006.313"},{"key":"9549_CR33","doi-asserted-by":"crossref","unstructured":"Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R., & Wearne, S. L. (2019). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. Plos One, 3, e1997.","DOI":"10.1371\/journal.pone.0001997"},{"key":"9549_CR34","unstructured":"Ruszczycki, B., Wlodarczyk, J., Kaczmarek, L. (2012). Method and a system for processing an image comprising dendritic spines.\u00a0https:\/\/patents.google.com\/patent\/US20140169647"},{"key":"9549_CR35","doi-asserted-by":"crossref","unstructured":"Ruszczycki, B., Szepesi, Z., Wilczynski, G. M., Bijata, M., Kalita, K., Kaczmarek, L., & Wlodarczyk, J. (2012). Sampling issues in quantitative analysis of dendritic spines morphology. BMC Bioinformatics, 13.","DOI":"10.1186\/1471-2105-13-213"},{"key":"9549_CR36","doi-asserted-by":"crossref","unstructured":"Ruszczycki, B., Bijata, M., Walczak, A., Wilczynski, G., & Wodarczyk, J. (2013). Contemporary Problems in Quantitative Image Analysis inStructural Neuronal Plasticity. InAdvanced Computational Approaches to Biomedical Engineering; Saha, P.K., Maulik, U.,Basu, S., Eds.;Springer: Berlin\/Heidelberg, Germany. pp. 159-175.","DOI":"10.1007\/978-3-642-41539-5_7"},{"key":"9549_CR37","doi-asserted-by":"publisher","first-page":"1121","DOI":"10.1109\/TFUZZ.2015.2502278","volume":"24","author":"PK Saha","year":"2016","unstructured":"Saha, P. K., Basu, S., & Hoffman, E. A. (2016). Multiscale Opening of Conjoined Fuzzy Objects: Theory and Applications. IEEE Transactions on Fuzzy Systems, 24, 1121\u20131133.","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"9549_CR38","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1152\/physrev.00012.2013","volume":"94","author":"C Sala","year":"2014","unstructured":"Sala, C., & Segal, M. (2014). Dendritic Spines: The Locus of Structural and Functional Plasticity. Physiological Reviews, 94, 141\u2013188.","journal-title":"Physiological Reviews"},{"issue":"4","key":"9549_CR39","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/s12021-017-9332-2","volume":"15","author":"PK Singh","year":"2017","unstructured":"Singh, P. K., Hernandez-Herrera, P., Labate, D., & Papadakis, M. (2017). Automated 3-D detection of dendritic spines from in vivo two-photon image stacks. Neuroinformatics, 15(4), 303\u2013319.","journal-title":"Neuroinformatics"},{"key":"9549_CR40","doi-asserted-by":"crossref","unstructured":"Smirnov, M. S., Garrett, T. R., & Yasuda, R. (2018). An open-source tool for analysis and automatic identification of dendritic spines using machine learning. PLoS One,\u00a013(7).","DOI":"10.1371\/journal.pone.0199589"},{"key":"9549_CR41","doi-asserted-by":"publisher","first-page":"7278","DOI":"10.1523\/JNEUROSCI.1879-05.2005","volume":"25","author":"TL Spires","year":"2005","unstructured":"Spires, T. L., Meyer-Luehmann, M., Stern, E. A., McLean, P. J., Skoch, J., Nguyen, P. T., et al. (2005). Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. Journal of Neuroscience, 25, 7278\u20137287.","journal-title":"Journal of Neuroscience"},{"key":"9549_CR42","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1186\/1756-6606-4-38","volume":"4","author":"SA Swanger","year":"2011","unstructured":"Swanger, S. A., Yao, X., Gross, C., & Bassell, G. J. (2011). Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model. Molecular Brain, 4, 38.","journal-title":"Molecular Brain"},{"key":"9549_CR43","doi-asserted-by":"publisher","first-page":"63314","DOI":"10.1371\/journal.pone.0063314","volume":"8","author":"Z Szepesi","year":"2013","unstructured":"Szepesi, Z., Bijata, M., Ruszczycki, B., Kaczmarek, L., & Wlodarczyk, J. (2013). Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation. PLoS One, 8, 63314.","journal-title":"PLoS One"},{"key":"9549_CR44","doi-asserted-by":"publisher","first-page":"788","DOI":"10.1038\/nature01273","volume":"420","author":"JT Trachtenberg","year":"2002","unstructured":"Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., & Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 420, 788.","journal-title":"Nature"},{"key":"9549_CR45","unstructured":"Wong, S. T. C., Chen, X., & Xu, X. (2006). Methods and systems for the analysis of 3d microscopic neuron images.\u00a0http:\/\/www.google.com.gt\/patents\/WO2006125188A1?cl=en"},{"key":"9549_CR46","volume-title":"4D tracking with Imaris","author":"T Worbs","year":"2007","unstructured":"Worbs, T., & Foster, R. (2007). 4D tracking with Imaris. Bitplane Imaris: Oxford Instruments http:\/\/www.bitplane.com\/learning\/4d-tracking-with-imaris-immunology"},{"key":"9549_CR47","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/j.jneumeth.2018.08.019","volume":"309","author":"X Xiao","year":"2018","unstructured":"Xiao, X., Djurisic, M., Hoogi, A., Sapp, R. W., Shatz, C. J., & Rubin, D. L. (2018). Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes. Journal of neuroscience methods, 309, 25\u201334.","journal-title":"Journal of neuroscience methods"},{"issue":"1","key":"9549_CR48","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1186\/s12859-018-2232-0","volume":"19","author":"C Xiao","year":"2018","unstructured":"Xiao, C., Li, W., Deng, H., Chen, X., Yang, Y., Xie, Q., & Han, H. (2018). Effective automated pipeline for 3D reconstruction of synapses based on deep learning. BMC bioinformatics, 19(1), 263.","journal-title":"BMC bioinformatics"},{"key":"9549_CR49","doi-asserted-by":"publisher","first-page":"1053","DOI":"10.1016\/j.neuroimage.2006.01.015","volume":"31","author":"PA Yushkevich","year":"2006","unstructured":"Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage, 31, 1053\u20138119.","journal-title":"Neuroimage"}],"updated-by":[{"updated":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"DOI":"10.1007\/s12021-022-09589-0","type":"correction","label":"Correction"}],"container-title":["Neuroinformatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12021-021-09549-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12021-021-09549-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12021-021-09549-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,8]],"date-time":"2022-10-08T23:12:06Z","timestamp":1665270726000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12021-021-09549-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11,7]]},"references-count":49,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2022,7]]}},"alternative-id":["9549"],"URL":"https:\/\/doi.org\/10.1007\/s12021-021-09549-0","relation":{"has-preprint":[{"id-type":"doi","id":"10.1101\/864587","asserted-by":"object"}]},"ISSN":["1539-2791","1559-0089"],"issn-type":[{"value":"1539-2791","type":"print"},{"value":"1559-0089","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,11,7]]},"assertion":[{"value":"18 October 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 November 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 June 2022","order":3,"name":"change_date","label":"Change Date","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Correction","order":4,"name":"change_type","label":"Change Type","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"A Correction to this paper has been published:","order":5,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"https:\/\/doi.org\/10.1007\/s12021-022-09589-0","URL":"https:\/\/doi.org\/10.1007\/s12021-022-09589-0","order":6,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}