{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T07:10:51Z","timestamp":1724310651826},"reference-count":48,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2018,11,15]],"date-time":"2018-11-15T00:00:00Z","timestamp":1542240000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100007601","name":"Horizon 2020","doi-asserted-by":"publisher","award":["654021"],"id":[{"id":"10.13039\/501100007601","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000268","name":"Biotechnology and Biological Sciences Research Council","doi-asserted-by":"publisher","award":["BB\/P025684\/1"],"id":[{"id":"10.13039\/501100000268","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neuroinform"],"published-print":{"date-parts":[[2019,7]]},"DOI":"10.1007\/s12021-018-9404-y","type":"journal-article","created":{"date-parts":[[2018,11,15]],"date-time":"2018-11-15T16:42:24Z","timestamp":1542300144000},"page":"391-406","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":17,"title":["A Text Mining Pipeline Using Active and Deep Learning Aimed at Curating Information in Computational Neuroscience"],"prefix":"10.1007","volume":"17","author":[{"given":"Matthew","family":"Shardlow","sequence":"first","affiliation":[]},{"given":"Meizhi","family":"Ju","sequence":"additional","affiliation":[]},{"given":"Maolin","family":"Li","sequence":"additional","affiliation":[]},{"given":"Christian","family":"O\u2019Reilly","sequence":"additional","affiliation":[]},{"given":"Elisabetta","family":"Iavarone","sequence":"additional","affiliation":[]},{"given":"John","family":"McNaught","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4097-9191","authenticated-orcid":false,"given":"Sophia","family":"Ananiadou","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,11,15]]},"reference":[{"key":"9404_CR1","doi-asserted-by":"publisher","DOI":"10.3389\/fninf.2013.00038","volume":"7","author":"K Ambert","year":"2013","unstructured":"Ambert, K., Cohen, A., Burns, G., Boudreau, E., & Sonmez, K. (2013). Virk: An active learning-based system for bootstrapping knowledge base development in the neurosciences. Frontiers in Neuroinformatics, 7, 38. \n https:\/\/doi.org\/10.3389\/fninf.2013.00038\n \n .","journal-title":"Frontiers in Neuroinformatics"},{"key":"9404_CR2","doi-asserted-by":"publisher","first-page":"182","DOI":"10.3389\/fnsys.2014.00182","volume":"8","author":"PF Balan","year":"2014","unstructured":"Balan, P. F., Gerits, A., & Vanduffel, W. (2014). A practical application of text mining to literature on cognitive rehabilitation and enhancement through neurostimulation. Front Syst Neurosci, 8, 182.","journal-title":"Front Syst Neurosci"},{"key":"9404_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.jbi.2016.09.009","volume":"64","author":"B Bhasuran","year":"2016","unstructured":"Bhasuran, B., Murugesan, G., Abdulkadhar, S., & Natarajan, J. (2016). Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases. J Biomed Inform, 64, 1\u20139. \n https:\/\/doi.org\/10.1016\/j.jbi.2016.09.009\n \n .","journal-title":"J Biomed Inform"},{"key":"9404_CR4","doi-asserted-by":"crossref","unstructured":"Chen, D., & Manning, C. A fast and accurate dependency parser using neural networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014\/October\/ 2014 (pp. 740\u2013750): Association for Computational Linguistics.","DOI":"10.3115\/v1\/D14-1082"},{"key":"9404_CR5","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/j.jbi.2015.09.010","volume":"58","author":"Y Chen","year":"2015","unstructured":"Chen, Y., Lasko, T. A., Mei, Q., Denny, J. C., & Xu, H. (2015). A study of active learning methods for named entity recognition in clinical text. J Biomed Inform, 58, 11\u201318. \n https:\/\/doi.org\/10.1016\/j.jbi.2015.09.010\n \n .","journal-title":"J Biomed Inform"},{"key":"9404_CR6","doi-asserted-by":"crossref","unstructured":"Chiu, B., Crichton, G., Korhonen, A., & Pyysalo, S. How to train good word embeddings for biomedical NLP. In Proceedings of the 15th Workshop on Biomedical Natural Language Processing, Berlin, Germany, 2016\/August\/ 2016 (pp. 166\u2013174): Association for Computational Linguistics.","DOI":"10.18653\/v1\/W16-2922"},{"issue":"3","key":"9404_CR7","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1385\/NI:1:3:215","volume":"1","author":"CJ Crasto","year":"2003","unstructured":"Crasto, C. J., Marenco, L. N., Migliore, M., Mao, B., Nadkarni, P. M., Miller, P., & Shepherd, G. M. (2003). Text mining neuroscience journal articles to populate neuroscience databases. Neuroinformatics, 1(3), 215\u2013237.","journal-title":"Neuroinformatics"},{"key":"9404_CR8","doi-asserted-by":"crossref","unstructured":"Dligach, D., Miller, T., Lin, C., Bethard, S., & Savova, G. Neural Temporal Relation Extraction. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, Valencia, Spain, 2017\/April\/ 2017 (pp. 746\u2013751): Association for Computational Linguistics.","DOI":"10.18653\/v1\/E17-2118"},{"issue":"8","key":"9404_CR9","doi-asserted-by":"publisher","first-page":"1772","DOI":"10.1002\/cne.23012","volume":"520","author":"L French","year":"2012","unstructured":"French, L., & Pavlidis, P. (2012). Using text mining to link journal articles to neuroanatomical databases. J Comp Neurol, 520(8), 1772\u20131783. \n https:\/\/doi.org\/10.1002\/cne.23012\n \n .","journal-title":"J Comp Neurol"},{"key":"9404_CR10","doi-asserted-by":"publisher","first-page":"29","DOI":"10.3389\/neuro.11.029.2009","volume":"3","author":"L French","year":"2009","unstructured":"French, L., Lane, S., Xu, L., & Pavlidis, P. (2009). Automated recognition of brain region mentions in neuroscience literature. Frontiers in Neuroinformatics, 3, 29.","journal-title":"Frontiers in Neuroinformatics"},{"issue":"22","key":"9404_CR11","doi-asserted-by":"publisher","first-page":"2963","DOI":"10.1093\/bioinformatics\/bts542","volume":"28","author":"L French","year":"2012","unstructured":"French, L., Lane, S., Xu, L., Siu, C., Kwok, C., Chen, Y., Krebs, C., & Pavlidis, P. (2012). Application and evaluation of automated methods to extract neuroanatomical connectivity statements from free text. Bioinformatics, 28(22), 2963\u20132970.","journal-title":"Bioinformatics"},{"issue":"14","key":"9404_CR12","doi-asserted-by":"publisher","first-page":"i37","DOI":"10.1093\/bioinformatics\/btx228","volume":"33","author":"M Habibi","year":"2017","unstructured":"Habibi, M., Weber, L., Neves, M., Wiegandt, D. L., & Leser, U. (2017). Deep learning with word embeddings improves biomedical named entity recognition. Bioinformatics, 33(14), i37\u2013i48.","journal-title":"Bioinformatics"},{"issue":"8","key":"9404_CR13","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Comput, 9(8), 1735\u20131780.","journal-title":"Neural Comput"},{"key":"9404_CR14","unstructured":"Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF Models for Sequence Tagging. CoRR, abs\/1508.01991."},{"key":"9404_CR15","doi-asserted-by":"crossref","unstructured":"Kim, S., Song, Y., Kim, K., Cha, J.-W., & Lee, G. G. MMR-based active machine learning for bio named entity recognition. In Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers, Stroudsburg, PA, USA, 2006\/\/ 2006 (pp. 69\u201372, NAACL-Short \u201806): Association for Computational Linguistics.","DOI":"10.3115\/1614049.1614067"},{"key":"9404_CR16","unstructured":"Lafferty, J. D., McCallum, A., & Pereira, F. C. N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the eighteenth international conference on machine learning, San Francisco, CA, USA, 2001\/\/ 2001 (pp. 282\u2013289, ICML \u201801): Morgan Kaufmann Publishers Inc."},{"key":"9404_CR17","doi-asserted-by":"crossref","unstructured":"Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural Architectures for Named Entity Recognition. CoRR, abs\/1603.01360.","DOI":"10.18653\/v1\/N16-1030"},{"key":"9404_CR18","unstructured":"Lapish, C. C., Tirupattur, N., & Mukhopadhyay, S. (2013). Text Mining for Neuroscience: A co-morbidity case study. In (pp. 117\u2013136). Berlin, Heidelberg: Springer Berlin Heidelberg."},{"key":"9404_CR19","doi-asserted-by":"publisher","unstructured":"Larson, S. D., & Martone, M. E. (2013). NeuroLex.org: An online framework for neuroscience knowledge. Frontiers in Neuroinformatics, 7, 18, doi:\n https:\/\/doi.org\/10.3389\/fninf.2013.00018\n \n .","DOI":"10.3389\/fninf.2013.00018"},{"issue":"11","key":"9404_CR20","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y Lecun","year":"1998","unstructured":"Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc IEEE, 86(11), 2278\u20132324. \n https:\/\/doi.org\/10.1109\/5.726791\n \n .","journal-title":"Proc IEEE"},{"key":"9404_CR21","unstructured":"Limsopatham, N., & Collier, N. Learning orthographic features in bi-directional LSTM for biomedical named entity recognition. In Proceedings of the fifth workshop on building and evaluating resources for biomedical text mining (BioTxtM 2016), Osaka, Japan, 2016 (pp. 10\u201319): Association for Computational Linguistics."},{"key":"9404_CR22","doi-asserted-by":"publisher","unstructured":"Marblestone, A. H., Wayne, G., & Kording, K. P. (2016). Toward an integration of deep learning and neuroscience. [hypothesis and theory]. Front Comput Neurosci, 10(94). \n https:\/\/doi.org\/10.3389\/fncom.2016.00094.","DOI":"10.3389\/fncom.2016.00094."},{"key":"9404_CR23","doi-asserted-by":"crossref","unstructured":"Miwa, M., & Bansal, M. (2016). End-to-end Relation Extraction using LSTMs on Sequences and Tree Structures. CoRR, abs\/1601.00770.","DOI":"10.18653\/v1\/P16-1105"},{"issue":"3","key":"9404_CR24","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1007\/s12021-008-9031-0","volume":"6","author":"H-M M\u00fcller","year":"2008","unstructured":"M\u00fcller, H.-M., Rangarajan, A., Teal, T. K., & Sternberg, P. W. (2008). Textpresso for neuroscience: Searching the full text of thousands of neuroscience research papers. Neuroinformatics, 6(3), 195\u2013204. \n https:\/\/doi.org\/10.1007\/s12021-008-9031-0\n \n .","journal-title":"Neuroinformatics"},{"key":"9404_CR25","doi-asserted-by":"publisher","DOI":"10.3389\/fninf.2017.00027","volume":"11","author":"C O\u2019Reilly","year":"2017","unstructured":"O\u2019Reilly, C., Iavarone, E., & Hill, S. L. (2017). A framework for collaborative curation of neuroscientific literature. Frontiers in Neuroinformatics, 11, 27. \n https:\/\/doi.org\/10.3389\/fninf.2017.00027\n \n .","journal-title":"Frontiers in Neuroinformatics"},{"issue":"24","key":"9404_CR26","doi-asserted-by":"publisher","first-page":"3089","DOI":"10.1093\/bioinformatics\/btl534","volume":"22","author":"N Okazaki","year":"2006","unstructured":"Okazaki, N., & Ananiadou, S. (2006). Building an abbreviation dictionary using a term recognition approach. Bioinformatics, 22(24), 3089\u20133095. \n https:\/\/doi.org\/10.1093\/bioinformatics\/btl534\n \n .","journal-title":"Bioinformatics"},{"issue":"9","key":"9404_CR27","doi-asserted-by":"publisher","first-page":"1246","DOI":"10.1093\/bioinformatics\/btq129","volume":"26","author":"N Okazaki","year":"2010","unstructured":"Okazaki, N., Ananiadou, S., & Tsujii, J. i. (2010). Building a high-quality sense inventory for improved abbreviation disambiguation. Bioinformatics, 26(9), 1246\u20131253. \n https:\/\/doi.org\/10.1093\/bioinformatics\/btq129.","journal-title":"Bioinformatics"},{"key":"9404_CR28","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1007\/0-387-36747-0_5","volume-title":"Discovering biomolecular mechanisms with computational biology","author":"H Pan","year":"2006","unstructured":"Pan, H., Zuo, L., Kanagasabai, R., Zhang, Z., Choudhary, V., Mohanty, B., Tan, S. L., Krishnan, S. P. T., Veladandi, P. S., Meka, A., Choy, W. K., Swarup, S., & Bajic, V. B. (2006). Extracting information for meaningful function inference through text-mining. In Discovering biomolecular mechanisms with computational biology (pp. 57\u201373). Boston, MA: Springer US."},{"key":"9404_CR29","doi-asserted-by":"publisher","unstructured":"Plis, S. M., Hjelm, D. R., Salakhutdinov, R., Allen, E. A., Bockholt, H. J., Long, J. D., Johnson, H. J., Paulsen, J. S., Turner, J. A., & Calhoun, V. D. (2014). Deep learning for neuroimaging: A validation study. [methods]. Front Neurosci, 8(229). \n https:\/\/doi.org\/10.3389\/fnins.2014.00229.","DOI":"10.3389\/fnins.2014.00229."},{"key":"9404_CR30","doi-asserted-by":"publisher","unstructured":"Rak, R., Rowley, A., Black, W., & Ananiadou, S. (2012). Argo: An integrative, interactive, text mining-based workbench supporting curation. Database, 2012, bas010-bas010, \n https:\/\/doi.org\/10.1093\/database\/bas010\n \n .","DOI":"10.1093\/database\/bas010"},{"key":"9404_CR31","doi-asserted-by":"publisher","unstructured":"Rao, J., He, H., & Lin, J. Noise-Contrastive Estimation for Answer Selection with Deep Neural Networks. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, New York, NY, USA, 2016\/\/ 2016 (pp. 1913\u20131916, CIKM \u201816): ACM. doi:\n https:\/\/doi.org\/10.1145\/2983323.2983872\n \n .","DOI":"10.1145\/2983323.2983872"},{"key":"9404_CR32","unstructured":"Richardet, R., Chappelier, J.-C., & Telefont, M. Bluima: A UIMA-based NLP toolkit for neuroscience. In UIMA@ GSCL, 2013\/\/ 2013 (pp. 34\u201341): Citeseer."},{"issue":"10","key":"9404_CR33","doi-asserted-by":"publisher","first-page":"1640","DOI":"10.1093\/bioinformatics\/btv025","volume":"31","author":"R Richardet","year":"2015","unstructured":"Richardet, R., Chappelier, J.-C., Telefont, M., & Hill, S. (2015a). Large-scale extraction of brain connectivity from the neuroscientific literature. Bioinformatics, 31(10), 1640\u20131647.","journal-title":"Bioinformatics"},{"key":"9404_CR34","doi-asserted-by":"publisher","unstructured":"Richardet, R., Chappelier, J. C., Tripathy, S., & Hill, S. (2015b). Agile text mining with Sherlok. In IEEE International Conference on Big Data (Big Data), Oct 29 2015-Nov 1 2015 (pp 1479\u20131484). \n https:\/\/doi.org\/10.1109\/BigData.2015.7363910\n \n .","DOI":"10.1109\/BigData.2015.7363910"},{"key":"9404_CR35","doi-asserted-by":"crossref","unstructured":"Settles, B., & Craven, M. An analysis of active learning strategies for sequence labeling tasks. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA, USA, 2008\/\/ 2008 (pp. 1070\u20131079, EMNLP \u201808): Association for Computational Linguistics.","DOI":"10.3115\/1613715.1613855"},{"key":"9404_CR36","doi-asserted-by":"publisher","unstructured":"Shen, D., Zhang, J., Su, J., Zhou, G., & Tan, C.-L. Multi-criteria-based Active Learning for Named Entity Recognition. In Proceedings of the 42Nd Annual Meeting on Association for Computational Linguistics, Stroudsburg, PA, USA, 2004\/\/ 2004 (ACL \u201804): Association for Computational Linguistics. doi:\n https:\/\/doi.org\/10.3115\/1218955.1219030\n \n .","DOI":"10.3115\/1218955.1219030"},{"key":"9404_CR37","doi-asserted-by":"crossref","unstructured":"Shen, Y., Yun, H., Lipton, Z., Kronrod, Y., & Anandkumar, A. Deep Active Learning for Named Entity Recognition. In Proceedings of the 2nd Workshop on Representation Learning for NLP, Vancouver, Canada, 2017\/August\/ 2017 (pp. 252\u2013256): Association for Computational Linguistics.","DOI":"10.18653\/v1\/W17-2630"},{"issue":"3","key":"9404_CR38","doi-asserted-by":"publisher","first-page":"239","DOI":"10.1093\/bib\/6.3.239","volume":"6","author":"I Spasic","year":"2005","unstructured":"Spasic, I., Ananiadou, S., McNaught, J., & Kumar, A. (2005). Text mining and ontologies in biomedicine: Making sense of raw text. Brief Bioinform, 6(3), 239\u2013251.","journal-title":"Brief Bioinform"},{"key":"9404_CR39","unstructured":"Stenetorp, P., Pyysalo, S., Topi\u0107, G., Ohta, T., Ananiadou, S., & Tsujii, J. i. BRAT: A web-based tool for NLP-assisted text annotation. In Proceedings of the demonstrations at the 13th conference of the European chapter of the Association for Computational Linguistics, 2012\/\/ 2012 (pp. 102\u2013107): Association for Computational Linguistics."},{"key":"9404_CR40","doi-asserted-by":"crossref","unstructured":"St\u00f6ckel, A., Paassen, B., Dickfelder, R., G\u00f6pfert, J. P., Brazda, N., M\u00fcller, H. W., et al. (2015). SCIE: Information extraction for spinal cord injury preclinical experiments \u00e2\u20ac\u201c a Webservice and open source toolkit. bioRxiv.","DOI":"10.1101\/013458"},{"issue":"D1","key":"9404_CR41","doi-asserted-by":"publisher","first-page":"D158","DOI":"10.1093\/nar\/gkw1099","volume":"45","author":"The UniProt Consortium","year":"2017","unstructured":"The UniProt Consortium. (2017). UniProt: The universal protein knowledgebase. Nucleic Acids Res, 45(D1), D158\u2013D169. \n https:\/\/doi.org\/10.1093\/nar\/gkw1099\n \n .","journal-title":"Nucleic Acids Res"},{"key":"9404_CR42","first-page":"1","volume":"5","author":"S Tokui","year":"2015","unstructured":"Tokui, S., Oono, K., Hido, S., & Clayton, J. (2015). Chainer: A next-generation open source framework for deep learning. In Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS), 5, 1\u20136.","journal-title":"In Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS)"},{"key":"9404_CR43","doi-asserted-by":"publisher","DOI":"10.3389\/fninf.2014.00040","volume":"8","author":"S Tripathy","year":"2014","unstructured":"Tripathy, S., Savitskaya, J., Burton, S., Urban, N., & Gerkin, R. (2014). NeuroElectro: A window to the world\u2019s neuron electrophysiology data. Frontiers in Neuroinformatics, 8, 40. \n https:\/\/doi.org\/10.3389\/fninf.2014.00040\n \n .","journal-title":"Frontiers in Neuroinformatics"},{"key":"9404_CR44","doi-asserted-by":"crossref","unstructured":"Tsuruoka, Y., & Tsujii, J. i. (2005). Bidirectional inference with the easiest-first strategy for tagging sequence data. Paper presented at the Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver, British Columbia, Canada,","DOI":"10.3115\/1220575.1220634"},{"issue":"6283","key":"9404_CR45","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1126\/science.352.6283.277","volume":"352","author":"E Underwood","year":"2016","unstructured":"Underwood, E. (2016). International brain projects proposed. Science, 352(6283), 277\u2013278. \n https:\/\/doi.org\/10.1126\/science.352.6283.277\n \n .","journal-title":"Science"},{"issue":"5","key":"9404_CR46","doi-asserted-by":"publisher","first-page":"535","DOI":"10.1038\/sj.ejhg.5201585","volume":"14","author":"MA Driel Van","year":"2006","unstructured":"Van Driel, M. A., Bruggeman, J., Vriend, G., Brunner, H. G., & Leunissen, J. A. M. (2006). A text-mining analysis of the human phenome. Eur J Hum Genet, 14(5), 535\u2013542.","journal-title":"Eur J Hum Genet"},{"key":"9404_CR47","doi-asserted-by":"publisher","DOI":"10.3389\/fnana.2015.00066","volume":"9","author":"X Vasques","year":"2015","unstructured":"Vasques, X., Richardet, R., Hill, S. L., Slater, D., Chappelier, J.-C., Pralong, E., Bloch, J., Draganski, B., & Cif, L. (2015). Automatic target validation based on neuroscientific literature mining for tractography. Front Neuroanat, 9, 66. \n https:\/\/doi.org\/10.3389\/fnana.2015.00066\n \n .","journal-title":"Front Neuroanat"},{"key":"9404_CR48","doi-asserted-by":"publisher","first-page":"356","DOI":"10.1038\/nn.4244","volume":"19","author":"DLK Yamins","year":"2016","unstructured":"Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. [perspective]. Nat Neurosci, 19, 356\u2013365. \n https:\/\/doi.org\/10.1038\/nn.4244.","journal-title":"Nat Neurosci"}],"container-title":["Neuroinformatics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12021-018-9404-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s12021-018-9404-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12021-018-9404-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,11,15]],"date-time":"2019-11-15T01:03:39Z","timestamp":1573779819000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s12021-018-9404-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11,15]]},"references-count":48,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2019,7]]}},"alternative-id":["9404"],"URL":"https:\/\/doi.org\/10.1007\/s12021-018-9404-y","relation":{},"ISSN":["1539-2791","1559-0089"],"issn-type":[{"value":"1539-2791","type":"print"},{"value":"1559-0089","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,11,15]]},"assertion":[{"value":"15 November 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}