{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:15:48Z","timestamp":1740147348764,"version":"3.37.3"},"reference-count":33,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T00:00:00Z","timestamp":1723161600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T00:00:00Z","timestamp":1723161600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100009006","name":"Chuzhou University","doi-asserted-by":"publisher","award":["202310377042"],"id":[{"id":"10.13039\/501100009006","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004386","name":"Universiti Malaya","doi-asserted-by":"publisher","award":["IMG001-2022"],"id":[{"id":"10.13039\/501100004386","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SIViP"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1007\/s11760-024-03492-8","type":"journal-article","created":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T10:02:47Z","timestamp":1723197767000},"page":"8585-8595","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["An intelligent mangosteen grading system based on an improved convolutional neural network"],"prefix":"10.1007","volume":"18","author":[{"given":"Yinping","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9873-4779","authenticated-orcid":false,"given":"Anis Salwa","family":"Mohd Khairuddin","sequence":"additional","affiliation":[]},{"given":"Joon Huang","family":"Chuah","sequence":"additional","affiliation":[]},{"given":"Xuewei","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Junwei","family":"Huang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,8,9]]},"reference":[{"issue":"2","key":"3492_CR1","doi-asserted-by":"publisher","first-page":"974","DOI":"10.5958\/0974-360X.2020.00182.1","volume":"13","author":"ANM Ansori","year":"2020","unstructured":"Ansori, A.N.M., Fadholly, A., Hayaza, S., Susilo, R.J.K., Inayatillah, B., Winarni, D., Husen, S.A.: A review on medicinal properties of mangosteen (Garcinia mangostana L.). Res. J. Pharm. Technol. 13(2), 974\u2013982 (2020). https:\/\/doi.org\/10.5958\/0974-360X.2020.00182.1","journal-title":"Res. J. Pharm. Technol."},{"key":"3492_CR2","doi-asserted-by":"publisher","DOI":"10.1111\/jfpp.13744","author":"C Palakawong","year":"2018","unstructured":"Palakawong, C., Delaquis, P.: Mangosteen processing: a review. J. Food Process. Preserv. (2018). https:\/\/doi.org\/10.1111\/jfpp.13744","journal-title":"J. Food Process. Preserv."},{"doi-asserted-by":"publisher","unstructured":"Akhter, I., Javeed, M., Jalal, A.: Deep skeleton modeling and hybrid hand-crafted cues over physical exercises. In:\u00a02023 International conference on communication, computing and digital systems (C-CODE), IEEE,\u00a0pp. 1\u20136 (2023). https:\/\/doi.org\/10.1109\/C-CODE58145.2023.10139863","key":"3492_CR3","DOI":"10.1109\/C-CODE58145.2023.10139863"},{"issue":"3","key":"3492_CR4","doi-asserted-by":"publisher","first-page":"353","DOI":"10.1007\/s12393-022-09307-1","volume":"14","author":"M Soltani Firouz","year":"2022","unstructured":"Soltani Firouz, M., Sardari, H.: Defect detection in fruit and vegetables by using machine vision systems and image processing. Food Eng. Rev. 14(3), 353\u2013379 (2022). https:\/\/doi.org\/10.1007\/s12393-022-09307-1","journal-title":"Food Eng. Rev."},{"doi-asserted-by":"publisher","unstructured":"Azmat, U., Jalal, A., Javeed, M.: Multi-sensors fused IoT-based home surveillance via Bag of visual and motion features. In:\u00a02023 international conference on communication, computing and digital systems (C-CODE), IEEE,\u00a0pp. 1\u20136 (2023). https:\/\/doi.org\/10.1109\/C-CODE58145.2023.10139889","key":"3492_CR5","DOI":"10.1109\/C-CODE58145.2023.10139889"},{"key":"3492_CR6","doi-asserted-by":"publisher","first-page":"106715","DOI":"10.1016\/j.compag.2022.106715","volume":"193","author":"S Fan","year":"2022","unstructured":"Fan, S., Liang, X., Huang, W., Zhang, V.J., Pang, Q., He, X., Zhang, C.: Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network. Comput. Electr. Agric. 193, 106715 (2022). https:\/\/doi.org\/10.1016\/j.compag.2022.106715","journal-title":"Comput. Electr. Agric."},{"key":"3492_CR7","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1038\/s41524-022-00734-6","volume":"8","author":"K Choudhary","year":"2022","unstructured":"Choudhary, K., DeCost, B., Chen, C., et al.: Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 8, 59 (2022). https:\/\/doi.org\/10.1038\/s41524-022-00734-6","journal-title":"npj Comput. Mater."},{"key":"3492_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/j.aiia.2024.01.001","author":"K Wonggasem","year":"2024","unstructured":"Wonggasem, K., Chakranon, P., Wongchaisuwat, P.: Automated quality inspection of baby corn using image processing and deep learning. Artif. Intell. Agric. (2024). https:\/\/doi.org\/10.1016\/j.aiia.2024.01.001","journal-title":"Artif. Intell. Agric."},{"key":"3492_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.jafr.2023.100931","volume":"15","author":"H Azizi","year":"2024","unstructured":"Azizi, H., Asli-Ardeh, E.A., Jahanbakhshi, A., Momeny, M.: Vision-based strawberry classification using generalized and robust deep networks. J. Agric. Food Res. 15, 100931 (2024). https:\/\/doi.org\/10.1016\/j.jafr.2023.100931","journal-title":"J. Agric. Food Res."},{"issue":"1","key":"3492_CR10","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.inpa.2016.10.003","volume":"4","author":"P Moallem","year":"2017","unstructured":"Moallem, P., Serajoddin, A., Pourghassem, H.: Computer vision-based apple grading for golden delicious apples based on surface features. Inf. Process. Agric. 4(1), 33\u201340 (2017). https:\/\/doi.org\/10.1016\/j.inpa.2016.10.003","journal-title":"Inf. Process. Agric."},{"issue":"1","key":"3492_CR11","doi-asserted-by":"publisher","first-page":"124","DOI":"10.3390\/agriculture13010124","volume":"13","author":"B Xu","year":"2023","unstructured":"Xu, B., Cui, X., Ji, W., Yuan, H., Wang, J.: Apple grading method design and implementation for automatic grader based on improved YOLOv5. Agriculture 13(1), 124 (2023). https:\/\/doi.org\/10.3390\/agriculture13010124","journal-title":"Agriculture"},{"key":"3492_CR12","doi-asserted-by":"publisher","first-page":"338","DOI":"10.1016\/j.biosystemseng.2020.08.021","volume":"198","author":"T Mon","year":"2020","unstructured":"Mon, T., ZarAung, N.: Vision based volume estimation method for automatic mango grading system. Biosyst. Eng. 198, 338\u2013349 (2020). https:\/\/doi.org\/10.1016\/j.biosystemseng.2020.08.021","journal-title":"Biosyst. Eng."},{"key":"3492_CR13","doi-asserted-by":"publisher","DOI":"10.3389\/fnut.2023.1247075","author":"L Wang","year":"2023","unstructured":"Wang, L., Dong, P., Wang, Q., Jia, K., Niu, Q.: Dried shiitake mushroom grade recognition using D-VGG network and machine vision. Front. Nutr. (2023). https:\/\/doi.org\/10.3389\/fnut.2023.1247075","journal-title":"Front. Nutr."},{"issue":"6","key":"3492_CR14","doi-asserted-by":"publisher","first-page":"105","DOI":"10.13652\/j.spjx.1003.5788.2022.80907","volume":"39","author":"LIU Hao","year":"2023","unstructured":"Hao, L.I.U., Xin-hua, L.I.N., Ya-nan, Z.H.U., Zhu, Z.H.O.U., Min, W.A.N.G., Xue-yong, C.H.E.N.: Design of appearance quality grading system for apricot mushroom based on machine vision. Food Mach. 39(6), 105\u2013111 (2023). https:\/\/doi.org\/10.13652\/j.spjx.1003.5788.2022.80907","journal-title":"Food Mach."},{"issue":"6","key":"3492_CR15","doi-asserted-by":"publisher","first-page":"061815","DOI":"10.1117\/1.JEI.31.6.061815","volume":"31","author":"M Bukumira","year":"2022","unstructured":"Bukumira, M., Antonijevic, M., Jovanovic, D., Zivkovic, M., Mladenovic, D., Kunjadic, G.: Carrot grading system using computer vision feature parameters and a cascaded graph convolutional neural network. J. Electron. Imaging 31(6), 061815\u2013061815 (2022). https:\/\/doi.org\/10.1117\/1.JEI.31.6.061815","journal-title":"J. Electron. Imaging"},{"issue":"12","key":"3492_CR16","doi-asserted-by":"publisher","first-page":"9643","DOI":"10.3390\/su15129643","volume":"15","author":"P Dhiman","year":"2023","unstructured":"Dhiman, P., Kaur, A., Balasaraswathi, V.R., Gulzar, Y., Alwan, A.A., Hamid, Y.: Image acquisition, preprocessing and classification of citrus fruit diseases: a systematic literature review. Sustainability 15(12), 9643 (2023). https:\/\/doi.org\/10.3390\/su15129643","journal-title":"Sustainability"},{"key":"3492_CR17","first-page":"275","volume-title":"International conference on computer and communication technologies","author":"AK Saini","year":"2023","unstructured":"Saini, A.K., Bhatnagar, R., Srivastava, D.K.: Computer vision-based model for classification of citrus fruits diseases with pertinent image preprocessing method. In: International conference on computer and communication technologies, pp. 275\u2013285. Springer Nature Singapore, Singapore (2023)"},{"issue":"2","key":"3492_CR18","doi-asserted-by":"publisher","first-page":"509","DOI":"10.1007\/s10750-021-04639-1","volume":"849","author":"H Sundt","year":"2022","unstructured":"Sundt, H., Alfredsen, K., Museth, J., Forseth, T.: Combining green LiDAR bathymetry, aerial images and telemetry data to derive mesoscale habitat characteristics for European grayling and brown trout in a Norwegian river. Hydrobiologia 849(2), 509\u2013525 (2022). https:\/\/doi.org\/10.1007\/s10750-021-04639-1","journal-title":"Hydrobiologia"},{"key":"3492_CR19","doi-asserted-by":"publisher","DOI":"10.1007\/s12194-024-00780-3","author":"F Hashimoto","year":"2024","unstructured":"Hashimoto, F., Onishi, Y., Ote, K., Tashima, H., Reader, A.J., Yamaya, T.: Deep learning-based PET image denoising and reconstruction: a review. Radiol. Phys. Technol. (2024). https:\/\/doi.org\/10.1007\/s12194-024-00780-3","journal-title":"Radiol. Phys. Technol."},{"key":"3492_CR20","doi-asserted-by":"publisher","first-page":"685","DOI":"10.1016\/j.neunet.2023.11.008","volume":"169","author":"D Zhang","year":"2024","unstructured":"Zhang, D., Wu, C., Zhou, J., Zhang, W., Lin, Z., Polat, K., Alenezi, F.: Robust underwater image enhancement with cascaded multi-level sub-networks and triple attention mechanism. Neural Netw. 169, 685\u2013697 (2024). https:\/\/doi.org\/10.1016\/j.neunet.2023.11.008","journal-title":"Neural Netw."},{"key":"3492_CR21","doi-asserted-by":"publisher","DOI":"10.1016\/j.rcim.2023.102659","volume":"86","author":"Y Zhang","year":"2024","unstructured":"Zhang, Y., Ding, K., Hui, J., Liu, S., Guo, W., Wang, L.: Skeleton-RGB integrated highly similar human action prediction in human\u2013robot collaborative assembly. Robot. Comput. Integr. Manuf. 86, 102659 (2024). https:\/\/doi.org\/10.1016\/j.rcim.2023.102659","journal-title":"Robot. Comput. Integr. Manuf."},{"key":"3492_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.jrmge.2023.11.025","author":"J Zi","year":"2024","unstructured":"Zi, J., Liu, T., Zhang, W., Pan, X., Ji, H., Zhu, H.: Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm. J. Rock Mech. Geotech. Eng. (2024). https:\/\/doi.org\/10.1016\/j.jrmge.2023.11.025","journal-title":"J. Rock Mech. Geotech. Eng."},{"key":"3492_CR23","doi-asserted-by":"publisher","DOI":"10.1016\/j.optlastec.2022.109011","volume":"159","author":"Z Yin","year":"2023","unstructured":"Yin, Z., Liu, H., Zhao, L., Cheng, J., Tan, C., Li, X., Chen, M.: Efficient and precise detection for surface flaws on large-aperture optics based on machine vision and machine learning. Optics Laser Technol. 159, 109011 (2023). https:\/\/doi.org\/10.1016\/j.optlastec.2022.109011","journal-title":"Optics Laser Technol."},{"key":"3492_CR24","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2022.104053","volume":"79","author":"L Jiang","year":"2023","unstructured":"Jiang, L., He, J., Pan, H., Wu, D., Jiang, T., Liu, J.: Seizure detection algorithm based on improved functional brain network structure feature extraction. Biomed. Signal Process. Control 79, 104053 (2023). https:\/\/doi.org\/10.1016\/j.bspc.2022.104053","journal-title":"Biomed. Signal Process. Control"},{"issue":"3","key":"3492_CR25","doi-asserted-by":"publisher","first-page":"242","DOI":"10.1007\/s42979-023-01695-3","volume":"4","author":"G Meena","year":"2023","unstructured":"Meena, G., Mohbey, K.K., Kumar, S., Chawda, R.K., Gaikwad, S.V.: Image-based sentiment analysis using InceptionV3 transfer learning approach. SN Comput. Sci. 4(3), 242 (2023). https:\/\/doi.org\/10.1007\/s42979-023-01695-3","journal-title":"SN Comput. Sci."},{"issue":"5","key":"3492_CR26","doi-asserted-by":"publisher","first-page":"1280","DOI":"10.1155\/2021\/2577375","volume":"12","author":"M Mujahid","year":"2022","unstructured":"Mujahid, M., Rustam, F., \u00c1lvarez, R., Luis Vidal Maz\u00f3n, J., D\u00edez, I.D.L.T., Ashraf, I.: Pneumonia classification from X-ray images with inception-V3 and convolutional neural network. Diagnostics 12(5), 1280 (2022). https:\/\/doi.org\/10.1155\/2021\/2577375","journal-title":"Diagnostics"},{"key":"3492_CR27","doi-asserted-by":"publisher","DOI":"10.1007\/s11042-023-16150-x","author":"L Liu","year":"2023","unstructured":"Liu, L., Wang, X., Bao, Q., Li, X.: Behavior detection and evaluation based on multi-frame MobileNet. Multimed. Tools Appl. (2023). https:\/\/doi.org\/10.1007\/s11042-023-16150-x","journal-title":"Multimed. Tools Appl."},{"doi-asserted-by":"crossref","unstructured":"Chen, Y., Dai, X., Chen, D., Liu, M., Dong, X., Yuan, L., Liu, Z.: Mobile-former: Bridging mobilenet and transformer. In:\u00a0Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition,\u00a0pp. 5270\u20135279, (2022)","key":"3492_CR28","DOI":"10.1109\/CVPR52688.2022.00520"},{"doi-asserted-by":"publisher","unstructured":"Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Adam, H.: Searching for mobilenetv3. In:\u00a0Proceedings of the IEEE\/CVF international conference on computer vision, pp. 1314\u20131324, (2019). https:\/\/doi.org\/10.1007\/s12652-021-03267","key":"3492_CR29","DOI":"10.1007\/s12652-021-03267"},{"issue":"20","key":"3492_CR30","doi-asserted-by":"publisher","first-page":"4306","DOI":"10.3390\/electronics12204306","volume":"12","author":"C Huang","year":"2023","unstructured":"Huang, C., Lei, Z., Li, L., Zhong, L., Lei, J., Wang, S.: A method for detecting key points of transferring barrel valve by integrating keypoint R-CNN and MobileNetV3. Electronics 12(20), 4306 (2023). https:\/\/doi.org\/10.3390\/electronics12204306","journal-title":"Electronics"},{"issue":"2","key":"3492_CR31","doi-asserted-by":"publisher","first-page":"818","DOI":"10.1177\/147592172311760","volume":"23","author":"S Song","year":"2024","unstructured":"Song, S., Zhang, S., Dong, W., Li, G., Pan, C.: Multi-source information fusion meta-learning network with convolutional block attention module for bearing fault diagnosis under limited dataset. Struct. Health Monit. 23(2), 818\u2013835 (2024). https:\/\/doi.org\/10.1177\/147592172311760","journal-title":"Struct. Health Monit."},{"key":"3492_CR32","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2022.104066","volume":"79","author":"H Li","year":"2023","unstructured":"Li, H., Chen, H., Jia, Z., Zhang, R., Yin, F.: A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification. Biomed. Signal Process. Control 79, 104066 (2023). https:\/\/doi.org\/10.1016\/j.bspc.2022.104066","journal-title":"Biomed. Signal Process. Control"},{"issue":"1","key":"3492_CR33","doi-asserted-by":"publisher","first-page":"258","DOI":"10.30630\/joiv.7.1.1069","volume":"7","author":"H Hairani","year":"2023","unstructured":"Hairani, H., Anggrawan, A., Priyanto, D.: Improvement performance of the random forest method on unbalanced diabetes data classification using Smote-Tomek Link. JOIV Int. J. Inform. Visualization 7(1), 258\u2013264 (2023). https:\/\/doi.org\/10.30630\/joiv.7.1.1069","journal-title":"JOIV Int. J. Inform. Visualization"}],"container-title":["Signal, Image and Video Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-024-03492-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11760-024-03492-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-024-03492-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,4]],"date-time":"2024-11-04T07:17:49Z","timestamp":1730704669000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11760-024-03492-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8,9]]},"references-count":33,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2024,12]]}},"alternative-id":["3492"],"URL":"https:\/\/doi.org\/10.1007\/s11760-024-03492-8","relation":{},"ISSN":["1863-1703","1863-1711"],"issn-type":[{"type":"print","value":"1863-1703"},{"type":"electronic","value":"1863-1711"}],"subject":[],"published":{"date-parts":[[2024,8,9]]},"assertion":[{"value":"28 June 2024","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 July 2024","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 August 2024","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 August 2024","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval"}}]}}