{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,27]],"date-time":"2024-10-27T02:10:01Z","timestamp":1729995001677,"version":"3.28.0"},"reference-count":22,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,8,29]],"date-time":"2023-08-29T00:00:00Z","timestamp":1693267200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,8,29]],"date-time":"2023-08-29T00:00:00Z","timestamp":1693267200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62072468"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007129","name":"Natural Science Foundation of Shandong Province","doi-asserted-by":"publisher","award":["ZR2019MF073"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SIViP"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1007\/s11760-023-02747-0","type":"journal-article","created":{"date-parts":[[2023,8,29]],"date-time":"2023-08-29T18:02:14Z","timestamp":1693332134000},"page":"199-206","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Beyond coordinate attention: spatial-temporal recalibration and channel scaling for skeleton-based action recognition"],"prefix":"10.1007","volume":"18","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9135-3615","authenticated-orcid":false,"given":"Jun","family":"Tang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0001-9691-4733","authenticated-orcid":false,"given":"Sihang","family":"Gong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9910-7884","authenticated-orcid":false,"given":"Yanjiang","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1408-5514","authenticated-orcid":false,"given":"Baodi","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0006-0707-1241","authenticated-orcid":false,"given":"Chunyu","family":"Du","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0003-7431-8222","authenticated-orcid":false,"given":"Boyang","family":"Gu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,29]]},"reference":[{"key":"2747_CR1","doi-asserted-by":"publisher","first-page":"1379","DOI":"10.1007\/s11760-021-01868-8","volume":"15","author":"YX Zhang","year":"2021","unstructured":"Zhang, Y.X., Zhang, H.B., Du, J.X., et al.: RGB+ 2D skeleton: local hand-crafted and 3d convolution feature coding for action recognition. Signal Image Video Process. 15, 1379\u20131386 (2021)","journal-title":"Signal Image Video Process."},{"issue":"1","key":"2747_CR2","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1007\/s11760-022-02203-5","volume":"17","author":"H Li","year":"2023","unstructured":"Li, H., Hu, W., Zang, Y., et al.: Action recognition based on attention mechanism and depthwise separable residual module. Signal Image Video Process. 17(1), 57\u201365 (2023)","journal-title":"Signal Image Video Process."},{"key":"2747_CR3","doi-asserted-by":"crossref","unstructured":"Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1110\u20131118 (2015)","DOI":"10.1109\/CVPR.2015.7298714"},{"key":"2747_CR4","doi-asserted-by":"crossref","unstructured":"Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)","DOI":"10.1609\/aaai.v32i1.12328"},{"issue":"2","key":"2747_CR5","doi-asserted-by":"publisher","first-page":"1474","DOI":"10.1109\/TPAMI.2022.3157033","volume":"45","author":"YF Song","year":"2022","unstructured":"Song, Y.F., Zhang, Z., Shan, C., et al.: Constructing stronger and faster baselines for skeleton-based action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 1474\u20131488 (2022)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"2747_CR6","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"2747_CR7","doi-asserted-by":"crossref","unstructured":"Woo, S., Park, J., Lee, J.Y., et al.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3\u201319 (2018)","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"2747_CR8","doi-asserted-by":"crossref","unstructured":"Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 13713\u201313722 (2021)","DOI":"10.1109\/CVPR46437.2021.01350"},{"key":"2747_CR9","doi-asserted-by":"crossref","unstructured":"Shi, L., Zhang, Y., Cheng, J., et al.: Skeleton-based action recognition with directed graph neural networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7912\u20137921 (2019)","DOI":"10.1109\/CVPR.2019.00810"},{"key":"2747_CR10","doi-asserted-by":"crossref","unstructured":"Zhang, P., Lan, C., Zeng, W., et al.: Semantics-guided neural networks for efficient skeleton-based human action recognition. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)","DOI":"10.1109\/CVPR42600.2020.00119"},{"key":"2747_CR11","doi-asserted-by":"publisher","first-page":"164","DOI":"10.1016\/j.neucom.2023.03.001","volume":"537","author":"W Xin","year":"2023","unstructured":"Xin, W., Liu, R., Liu, Y., et al.: Transformer for skeleton-based action recognition: a review of recent advances. Neurocomputing 537, 164\u2013186 (2023)","journal-title":"Neurocomputing"},{"key":"2747_CR12","doi-asserted-by":"crossref","unstructured":"Song, Y.F., Zhang, Z., Shan, C., et al.: Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1625\u20131633 (2020)","DOI":"10.1145\/3394171.3413802"},{"key":"2747_CR13","doi-asserted-by":"crossref","unstructured":"Howard, A., Sandler, M., Chu, G., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp 1314\u20131324 (2019)","DOI":"10.1109\/ICCV.2019.00140"},{"key":"2747_CR14","doi-asserted-by":"crossref","unstructured":"Shahroudy, A., Liu, J., Ng, T.T., et\u00a0al.: Ntu rgb+ d: a large scale dataset for 3d human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010\u20131019 (2016)","DOI":"10.1109\/CVPR.2016.115"},{"key":"2747_CR15","doi-asserted-by":"crossref","unstructured":"Liu, J., Shahroudy, A., Perez, M., et al.: Ntu rgb+ d 120: a large-scale benchmark for 3d human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2684\u20132701 (2019)","DOI":"10.1109\/TPAMI.2019.2916873"},{"key":"2747_CR16","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Maire, M., Belongie, S., et al.: Microsoft coco: common objects in context. In: Computer Vision\u2013ECCV 2014: 13th European Conference, Zurich, Switzerland, 6\u201312 Sept, 2014, Proceedings, Part V 13, pp. pp 740\u2013755. Springer (2014)","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"2747_CR17","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1007\/s11263-014-0733-5","volume":"111","author":"M Everingham","year":"2015","unstructured":"Everingham, M., Eslami, S.A., Van Gool, L., et al.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111, 98\u2013136 (2015)","journal-title":"Int. J. Comput. Vis."},{"key":"2747_CR18","doi-asserted-by":"crossref","unstructured":"Cordts, M., Omran, M., Ramos, S., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213\u20133223 (2016)","DOI":"10.1109\/CVPR.2016.350"},{"key":"2747_CR19","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., et al.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510\u20134520 (2018)","DOI":"10.1109\/CVPR.2018.00474"},{"key":"2747_CR20","doi-asserted-by":"crossref","unstructured":"Liu, W., Anguelov, D., Erhan, D., et al.: Ssd: single shot multibox detector. In: Computer Vision\u2013ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11\u201314 Oct, 2016, Proceedings, Part I, pp. 21\u201337. Springer (2016)","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"2747_CR21","doi-asserted-by":"crossref","unstructured":"Chen, L.C., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"2747_CR22","doi-asserted-by":"crossref","unstructured":"Zhou, B., Khosla, A., Lapedriza, A., et al.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921\u20132929 (2016)","DOI":"10.1109\/CVPR.2016.319"}],"container-title":["Signal, Image and Video Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-023-02747-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11760-023-02747-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-023-02747-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,27]],"date-time":"2024-10-27T01:57:04Z","timestamp":1729994224000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11760-023-02747-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,29]]},"references-count":22,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2024,2]]}},"alternative-id":["2747"],"URL":"https:\/\/doi.org\/10.1007\/s11760-023-02747-0","relation":{},"ISSN":["1863-1703","1863-1711"],"issn-type":[{"type":"print","value":"1863-1703"},{"type":"electronic","value":"1863-1711"}],"subject":[],"published":{"date-parts":[[2023,8,29]]},"assertion":[{"value":"1 July 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 August 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 August 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 August 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no relevant financial or non-financial interests to disclose.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}