{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,2]],"date-time":"2024-03-02T14:07:57Z","timestamp":1709388477868},"reference-count":28,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2022,7,24]],"date-time":"2022-07-24T00:00:00Z","timestamp":1658620800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,7,24]],"date-time":"2022-07-24T00:00:00Z","timestamp":1658620800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SIViP"],"published-print":{"date-parts":[[2023,6]]},"DOI":"10.1007\/s11760-022-02315-y","type":"journal-article","created":{"date-parts":[[2022,7,24]],"date-time":"2022-07-24T12:02:11Z","timestamp":1658664131000},"page":"1087-1095","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["sEMG-based deep learning framework for the automatic detection of knee abnormality"],"prefix":"10.1007","volume":"17","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4655-2324","authenticated-orcid":false,"given":"Ankit","family":"Vijayvargiya","sequence":"first","affiliation":[]},{"given":"Bharat","family":"Singh","sequence":"additional","affiliation":[]},{"given":"Nidhi","family":"Kumari","sequence":"additional","affiliation":[]},{"given":"Rajesh","family":"Kumar","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,24]]},"reference":[{"key":"2315_CR1","unstructured":"Arthritis Foundation. Arthritis By The Numbers. https:\/\/www.arthritis.org\/getmedia\/e1256607-fa87-4593-aa8a-8db4f291072a\/2019-abtn-final-march-2019.pdf (2019)"},{"issue":"3","key":"2315_CR2","doi-asserted-by":"publisher","first-page":"590","DOI":"10.1097\/ALN.0000000000002238","volume":"129","author":"P Richeb\u00e9","year":"2018","unstructured":"Richeb\u00e9, P., Capdevila, X., Rivat, C.: Persistent postsurgical pain: pathophysiology and preventative pharmacologic considerations. Anesthesiology 129(3), 590\u2013607 (2018)","journal-title":"Anesthesiology"},{"issue":"5","key":"2315_CR3","doi-asserted-by":"publisher","first-page":"450","DOI":"10.1136\/ard.62.5.450","volume":"62","author":"J Bedson","year":"2003","unstructured":"Bedson, J., Jordan, K., Croft, P.: How do gps use x rays to manage chronic knee pain in the elderly? a case study. Ann. Rheum. Dis. 62(5), 450\u2013454 (2003)","journal-title":"Ann. Rheum. Dis."},{"issue":"1","key":"2315_CR4","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1504\/IJSNET.2019.099230","volume":"30","author":"T Hussain","year":"2019","unstructured":"Hussain, T., Maqbool, H.F., Iqbal, N., Salman, M.K., Dehghani-Sanij, A.A.: Computational model for the recognition of lower limb movement using wearable gyroscope sensor. Int J Sensor Netw 30(1), 35\u201345 (2019)","journal-title":"Int J Sensor Netw"},{"issue":"3","key":"2315_CR5","first-page":"115","volume":"9","author":"R Merletti","year":"1989","unstructured":"Merletti, R., De Luca, C.J.: New techniques in surface electromyography. Comput. Aided Electromyogr. Expert Syst. 9(3), 115\u2013124 (1989)","journal-title":"Comput. Aided Electromyogr. Expert Syst."},{"key":"2315_CR6","doi-asserted-by":"crossref","unstructured":"Vijayvargiya, A., Singh, P.L., Verma, S.M., Kumar, R., Bansal, S.: Performance comparison analysis of different classifier for early detection of knee osteoarthritis. In: Sensors for Health Monitoring. Elsevier (2019)","DOI":"10.1016\/B978-0-12-819361-7.00012-9"},{"key":"2315_CR7","doi-asserted-by":"crossref","unstructured":"Vijayvargiya, A., Kumar, R., Dey, N., Manuel, J., Tavares, R.S. Comparative analysis of machine learning techniques for the classification of knee abnormality. In: IEEE 5th International Conference on Computing Communication and Automation (ICCCA). IEEE (2020)","DOI":"10.1109\/ICCCA49541.2020.9250799"},{"key":"2315_CR8","doi-asserted-by":"crossref","unstructured":"Dhanka, B., Vijayvargiya, A., Kumar, R., Ghanshyam, S.: A comparative assessment of machine learning techniques for epilepsy detection using eeg signal. In: IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). IEEE (2020)","DOI":"10.1109\/UPCON50219.2020.9376567"},{"issue":"3","key":"2315_CR9","first-page":"361","volume":"103","author":"USLG Da Silva","year":"2016","unstructured":"Da Silva, U.S.L.G., Villagra, H.A., Oliva, L.L., Marconi, N.F.: Emg activity of upper limb on spinal cord injury individuals during whole-body vibration. Physiol. Int. (Acta Physiologica Hungarica) 103(3), 361\u2013367 (2016)","journal-title":"Physiol. Int. (Acta Physiologica Hungarica)"},{"key":"2315_CR10","doi-asserted-by":"publisher","first-page":"335","DOI":"10.1016\/j.bspc.2017.10.002","volume":"40","author":"J Chen","year":"2018","unstructured":"Chen, J., Zhang, X., Cheng, Y., Xi, N.: Surface emg based continuous estimation of human lower limb joint angles by using deep belief networks. Biomed. Signal Process. Control 40, 335\u2013342 (2018)","journal-title":"Biomed. Signal Process. Control"},{"issue":"3","key":"2315_CR11","doi-asserted-by":"publisher","first-page":"542","DOI":"10.1109\/TBME.2009.2034734","volume":"57","author":"HA Varol","year":"2009","unstructured":"Varol, H.A., Sup, F., Goldfarb, M.: Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans. Biomed. Eng. 57(3), 542\u2013551 (2009)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"2315_CR12","doi-asserted-by":"crossref","unstructured":"Choi, H.K., Jeong, J.H., Hwang, S.H., Choi, H.C. and Hak C.W.: Feature evaluation and pattern recognition of lower limb muscle emg during postural balance control. In: Key Engineering Materials, vol. 326, pp. 867\u2013870. Trans Tech Publ (2006)","DOI":"10.4028\/www.scientific.net\/KEM.326-328.867"},{"key":"2315_CR13","doi-asserted-by":"crossref","unstructured":"Vijayvargiya, A., Kumar, R., Dey, N., Tavares, J.M.R.S.: Comparative analysis of machine learning techniques for the classification of knee abnormality. In: IEEE 5th International Conference on Computing Communication and Automation (ICCCA). IEEE (2020)","DOI":"10.1109\/ICCCA49541.2020.9250799"},{"key":"2315_CR14","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2021.102406","volume":"66","author":"A Vijayvargiya","year":"2021","unstructured":"Vijayvargiya, A., Prakash, C., Kumar, R., Bansal, S., Tavares, J.M.R.S.: Human knee abnormality detection from imbalanced sEMG data. Biomed. Signal Process. Control 66, 102406 (2021)","journal-title":"Biomed. Signal Process. Control"},{"issue":"7","key":"2315_CR15","doi-asserted-by":"publisher","first-page":"1137","DOI":"10.1007\/s11517-015-1443-z","volume":"54","author":"\u00d6F Ertu\u011frul","year":"2016","unstructured":"Ertu\u011frul, \u00d6.F., Kaya, Y., Tekin, R.: A novel approach for semg signal classification with adaptive local binary patterns. Med. Biol. Eng. Comput. 54(7), 1137\u20131146 (2016)","journal-title":"Med. Biol. Eng. Comput."},{"key":"2315_CR16","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1016\/j.compbiomed.2017.09.017","volume":"100","author":"UR Acharya","year":"2018","unstructured":"Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270\u2013278 (2018)","journal-title":"Comput. Biol. Med."},{"key":"2315_CR17","unstructured":"Sanchez, O.F.A., Sotelo, J.L.R., Gonzales, M.H., Hernandez, G.A.M.: Emg dataset in lower limb data set. UCI Mach. Learn. Repos. 2 (2014)"},{"key":"2315_CR18","unstructured":"Lichman, M. : UCI Machine Learning Repository, School Inf. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep., 2013. [Online]. Available: http:\/\/archive.ics.uci.edu\/ml"},{"key":"2315_CR19","doi-asserted-by":"crossref","unstructured":"Chowdhury, R.H., Reaz, M.B., Ali, M.A., Bakar, A.A., Chellappan, K., Chang, T.G.: Surface electromyography signal processing and classification techniques. Sensors 13(9), 12431\u201312466 (2013)","DOI":"10.3390\/s130912431"},{"key":"2315_CR20","doi-asserted-by":"crossref","unstructured":"Jiang, C.-F., Kuo, S.-L.: A comparative study of wavelet denoising of surface electromyographic signals. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE (2007)","DOI":"10.1109\/IEMBS.2007.4352679"},{"issue":"02","key":"2315_CR21","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1142\/S0219477511000466","volume":"10","author":"A Phinyomark","year":"2011","unstructured":"Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Wavelet-based denoising algorithm for robust EMG pattern recognition. Fluct. Noise Lett. 10(02), 157\u2013167 (2011)","journal-title":"Fluct. Noise Lett."},{"issue":"2","key":"2315_CR22","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1109\/99.388960","volume":"2","author":"A Graps","year":"1995","unstructured":"Graps, A.: An introduction to wavelets. IEEE Comput. Sci. Eng. 2(2), 50\u201361 (1995)","journal-title":"IEEE Comput. Sci. Eng."},{"key":"2315_CR23","doi-asserted-by":"crossref","unstructured":"He, C., Xing, J., Li, J., Yang, Q., Wang, R.: A new wavelet threshold determination method considering interscale correlation in signal denoising. Math. Probl. Eng. (2015)","DOI":"10.1155\/2015\/280251"},{"issue":"4","key":"2315_CR24","doi-asserted-by":"publisher","first-page":"6474","DOI":"10.3390\/s140406474","volume":"14","author":"O Banos","year":"2014","unstructured":"Banos, O., Galvez, J.-M., Damas, M., Pomares, H., Rojas, I.: Window size impact in human activity recognition. Sensors 14(4), 6474\u20136499 (2014)","journal-title":"Sensors"},{"issue":"3","key":"2315_CR25","doi-asserted-by":"publisher","first-page":"675","DOI":"10.1109\/TNSRE.2018.2796070","volume":"26","author":"GR Naik","year":"2018","unstructured":"Naik, G.R., Selvan, S.E., Arjunan, S.P., Acharyya, A., Kumar, D.K., Ramanujam, A., Nguyen, H.T.: An ICA-EBM-based sEMG classifier for recognizing lower limb movements in individuals with and without knee pathology. IEEE Trans. Neural Syst. Rehabili Eng. 26(3), 675\u2013686 (2018)","journal-title":"IEEE Trans. Neural Syst. Rehabili Eng."},{"issue":"3","key":"2315_CR26","doi-asserted-by":"publisher","first-page":"664","DOI":"10.1109\/TBME.2015.2468589","volume":"63","author":"S Kiranyaz","year":"2015","unstructured":"Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-d convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664\u2013675 (2015)","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"8","key":"2315_CR27","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"key":"2315_CR28","unstructured":"Kingma, D.P., Adam, J.B.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"}],"container-title":["Signal, Image and Video Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-022-02315-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11760-022-02315-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-022-02315-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,24]],"date-time":"2023-04-24T05:15:20Z","timestamp":1682313320000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11760-022-02315-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,24]]},"references-count":28,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,6]]}},"alternative-id":["2315"],"URL":"https:\/\/doi.org\/10.1007\/s11760-022-02315-y","relation":{},"ISSN":["1863-1703","1863-1711"],"issn-type":[{"value":"1863-1703","type":"print"},{"value":"1863-1711","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,7,24]]},"assertion":[{"value":"2 November 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 June 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 July 2022","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 July 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}