{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:15:59Z","timestamp":1740147359791,"version":"3.37.3"},"reference-count":31,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2022,1,22]],"date-time":"2022-01-22T00:00:00Z","timestamp":1642809600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,22]],"date-time":"2022-01-22T00:00:00Z","timestamp":1642809600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100004781","name":"Institut Pengurusan dan Pemantauan Penyelidikan, Universiti Malaya","doi-asserted-by":"publisher","award":["PPSI-2020-CLUSTER-SD01"],"id":[{"id":"10.13039\/501100004781","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SIViP"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1007\/s11760-021-02113-y","type":"journal-article","created":{"date-parts":[[2022,1,22]],"date-time":"2022-01-22T00:03:41Z","timestamp":1642809821000},"page":"1587-1594","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Texture image classification using improved image enhancement and adaptive SVM"],"prefix":"10.1007","volume":"16","author":[{"given":"Lydia Binti","family":"Abdul Hamid","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9873-4779","authenticated-orcid":false,"given":"Anis Salwa","family":"Mohd Khairuddin","sequence":"additional","affiliation":[]},{"given":"Uswah","family":"Khairuddin","sequence":"additional","affiliation":[]},{"given":"Nenny Ruthfalydia","family":"Rosli","sequence":"additional","affiliation":[]},{"given":"Norrima","family":"Mokhtar","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,22]]},"reference":[{"key":"2113_CR1","doi-asserted-by":"publisher","first-page":"208","DOI":"10.1163\/22941932-00000096","volume":"36","author":"F Ruffinatto","year":"2015","unstructured":"Ruffinatto, F., Crivellaro, A., Wiedenhoeft, A.C.: Review of macroscopic features for hardwood and soft-wood identification and a proposal for a new character list. IAWA J. 36, 208\u2013241 (2015)","journal-title":"IAWA J."},{"key":"2113_CR2","doi-asserted-by":"crossref","unstructured":"Bremanath, R., Nithiya, B., Saipriya, R.: Wood species recognition using GLCM and correlation. International conference on advances in recent technology in communication and computing, 615\u2013619 (2009)","DOI":"10.1109\/ARTCom.2009.10"},{"key":"2113_CR3","doi-asserted-by":"publisher","first-page":"1469","DOI":"10.1007\/s00226-017-0947-0","volume":"51","author":"GA Dahle","year":"2017","unstructured":"Dahle, G.A.: Influence of bark on mapping of mechanical strain using digital image correlation. Wood Sci. Technol. 51, 1469\u20131477 (2017)","journal-title":"Wood Sci. Technol."},{"key":"2113_CR4","doi-asserted-by":"publisher","first-page":"1193","DOI":"10.1007\/s00226-012-0468-9","volume":"46","author":"B Dawson-Andoh","year":"2012","unstructured":"Dawson-Andoh, B., Adedipe, O.E.: Rapid spectroscopic separation of three Canadian softwoods. Wood Sci. Technol. 46, 1193\u20131202 (2012)","journal-title":"Wood Sci. Technol."},{"key":"2113_CR5","doi-asserted-by":"publisher","first-page":"749","DOI":"10.1007\/s00226-013-0536-9","volume":"47","author":"JK Denzler","year":"2013","unstructured":"Denzler, J.K., Weidenhiller, A., Golser, M.: Comparison of different approaches for automatic bark detection on log images. Wood Sci. Technol. 47, 749\u2013761 (2013)","journal-title":"Wood Sci. Technol."},{"key":"2113_CR6","doi-asserted-by":"crossref","unstructured":"Ibrahim, I., Mohd Khairuddin. A.S., Abu Talip, M.S.: Tree species recognition system based on macroscopic image analysis. Wood Sci. Technol. 51, 431\u2013444 (2017).","DOI":"10.1007\/s00226-016-0859-4"},{"key":"2113_CR7","doi-asserted-by":"crossref","unstructured":"Mustafa, W. A., Khairunizam, W., Yazid H., Ibrahim Z., Shahriman A. and Razlan, Z. M.: Image correction based on homomorphic filtering approaches: a study. international conference on computational approach in smart systems design and applications (ICASSDA), 1\u20135 (2018)","DOI":"10.1109\/ICASSDA.2018.8477634"},{"key":"2113_CR8","doi-asserted-by":"publisher","first-page":"7","DOI":"10.1007\/s00226-014-0679-3","volume":"49","author":"T Pahlberg","year":"2015","unstructured":"Pahlberg, T., Johansson, E., Hagman, O., Thurley, M.: Wood fingerprint recognition using knot neighbourhood K-plet descriptors. Wood Sci. Technol. 49, 7\u201320 (2015)","journal-title":"Wood Sci. Technol."},{"key":"2113_CR9","doi-asserted-by":"publisher","first-page":"1173","DOI":"10.1007\/s00468-014-1028-8","volume":"28","author":"V Sebera","year":"2014","unstructured":"Sebera, V., Praus, L., Tippner, J., Kunecky, J., Cepela, J., Wimmer, R.: Using optical full-field measurement based on digital image correlation to measure strain on a tree subjected to mechanical load. Trees 28, 1173\u20131184 (2014)","journal-title":"Trees"},{"key":"2113_CR10","doi-asserted-by":"crossref","unstructured":"Yadav, A.R., Dewal, M.L., Anand, R.S., Gupta, S.: Classification of hardwood species using ANN classifier. Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), 1\u20135 (2013)","DOI":"10.1109\/NCVPRIPG.2013.6776231"},{"key":"2113_CR11","doi-asserted-by":"publisher","first-page":"202","DOI":"10.1016\/j.neunet.2020.01.017","volume":"124","author":"S Raghu","year":"2020","unstructured":"Raghu, S., Natarajan, S., Yasin, T., Shyam, V.R., Pieter, L.K.: EEG based multi-class type classification using convolutional neural network and transfer learning. Neural Netw. 124, 202\u2013212 (2020)","journal-title":"Neural Netw."},{"key":"2113_CR12","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"2113_CR13","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1007\/s11265-009-0447-z","volume":"64","author":"KM Chang","year":"2011","unstructured":"Chang, K.M., Liu, S.H.: Gaussian noise filtering from ECG by Wiener filter and ensemble empirical mode decomposition. J. Signal Process. Syst. 64, 249\u2013264 (2011)","journal-title":"J. Signal Process. Syst."},{"issue":"4","key":"2113_CR14","doi-asserted-by":"publisher","first-page":"161","DOI":"10.14445\/22315381\/IJETT-V14P232","volume":"14","author":"M Thakur","year":"2014","unstructured":"Thakur, M., Datar, S.: Image restoration based on deconvolution by Richardson Lucy algorithm. Intern. J. Eng. Trends Technol. 14(4), 161\u2013165 (2014)","journal-title":"Intern. J. Eng. Trends Technol."},{"key":"2113_CR15","doi-asserted-by":"crossref","unstructured":"Paula Filho, P.L., Oliveira, L.S., Britto, A.S., Sabourin, R.: Forest species recognition using color-based features. 20th International Conference on Pattern Recognition (ICPR), 4178\u20134181 (2010)","DOI":"10.1109\/ICPR.2010.1015"},{"key":"2113_CR16","doi-asserted-by":"crossref","unstructured":"Yusof, R., Rosli, N.R., Khalid, M.: Using gabor filters as image multiplier for tropical wood species recognition system. 12th International Conference on Computer Modelling and Simulation (UKSim), 289\u2013294 (2010)","DOI":"10.1109\/UKSIM.2010.61"},{"key":"2113_CR17","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1007\/s00138-015-0659-0","volume":"26","author":"JG Martins","year":"2015","unstructured":"Martins, J.G., Oliveira, L.S., Britto, A.S., Sabourin, R.: Forest species recognition based on dynamic classifier selection and dissimilarity feature vector representation. Mach. Vis. Appl. 26, 279\u2013293 (2015)","journal-title":"Mach. Vis. Appl."},{"key":"2113_CR18","doi-asserted-by":"crossref","unstructured":"Martins, J.G., Oliveira, L.S., Sabourin, R.: Combining textural descriptors for forest species recognition. 38th Annual Conference on IEEE Industrial Electronics Society (IECON), 1483\u20131488 (2012)","DOI":"10.1109\/IECON.2012.6388523"},{"issue":"7","key":"2113_CR19","doi-asserted-by":"publisher","first-page":"1231","DOI":"10.3844\/jcssp.2014.1231.1237","volume":"10","author":"S Mohan","year":"2014","unstructured":"Mohan, S., Venkatachalapathy, K., Sudhakar, P.: An intelligent recognition system for identification of wood species. J. Comput. Sci. 10(7), 1231\u20131237 (2014)","journal-title":"J. Comput. Sci."},{"key":"2113_CR20","doi-asserted-by":"publisher","first-page":"1589","DOI":"10.1007\/s00138-013-0526-9","volume":"24","author":"R Yusof","year":"2013","unstructured":"Yusof, R., Khalid, M., Khairuddin, A.S.: Fuzzy logic-based pre-classifier for tropical wood species recognition system. Mach. V. Appl. 24, 1589\u20131604 (2013)","journal-title":"Mach. V. Appl."},{"issue":"4","key":"2113_CR21","doi-asserted-by":"publisher","first-page":"517","DOI":"10.1080\/0952813X.2019.1572658","volume":"31","author":"SA Rahimi","year":"2019","unstructured":"Rahimi, S.A., Sajedi, H.: Monitoring air pollution by deep features and extreme learning machine. J. Exp. Theor Artif. Intell. 31(4), 517\u2013531 (2019)","journal-title":"J. Exp. Theor Artif. Intell."},{"key":"2113_CR22","doi-asserted-by":"publisher","first-page":"325","DOI":"10.1007\/s11265-019-01501-5","volume":"92","author":"X Liu","year":"2020","unstructured":"Liu, X., Du, J., Yang, J., et al.: Coronary artery fibrous plaque detection based on multi-scale convolutional neural networks. J. Signal Process. Syst. 92, 325\u2013333 (2020)","journal-title":"J. Signal Process. Syst."},{"key":"2113_CR23","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1007\/s11265-016-1134-5","volume":"87","author":"AO Carvalho Filho","year":"2017","unstructured":"Carvalho Filho, A.O., Silva, A.C., de Paiva, A.C., et al.: Lung-nodule classification based on computed tomography using taxonomic diversity indexes and an SVM. J. Signal Process. Syst. 87, 179\u2013196 (2017)","journal-title":"J. Signal Process. Syst."},{"key":"2113_CR24","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1007\/s11265-015-1006-4","volume":"82","author":"J Lan","year":"2016","unstructured":"Lan, J., Jiang, Y., Fan, G., et al.: Real-time automatic obstacle detection method for traffic surveillance in urban traffic. J. Signal Process. Syst. 82, 357\u2013371 (2016)","journal-title":"J. Signal Process. Syst."},{"key":"2113_CR25","doi-asserted-by":"publisher","first-page":"1115","DOI":"10.1007\/s11760-018-1267-z","volume":"12","author":"S Amraee","year":"2018","unstructured":"Amraee, S., Vafaei, A.: Abnormal event detection in crowded scenes using one-class SVM. SIViP 12, 1115\u20131123 (2018)","journal-title":"SIViP"},{"key":"2113_CR26","doi-asserted-by":"publisher","first-page":"429","DOI":"10.1007\/s11760-009-0132-5","volume":"4","author":"YB Salem","year":"2010","unstructured":"Salem, Y.B., Nasri, S.: Automatic recognition of woven fabrics based on texture and using SVM. SIViP 4, 429\u2013434 (2010)","journal-title":"SIViP"},{"key":"2113_CR27","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1007\/s11760-018-1364-z","volume":"13","author":"DE Touil","year":"2019","unstructured":"Touil, D.E., Terki, N., Medouakh, S.: Hierarchical convolutional features for visual tracking via two combined color spaces with SVM classifier. SIViP 13, 359\u2013368 (2019)","journal-title":"SIViP"},{"key":"2113_CR28","doi-asserted-by":"publisher","first-page":"1471","DOI":"10.1007\/s11760-020-01681-9","volume":"14","author":"R Lekhal","year":"2020","unstructured":"Lekhal, R., Zidelmal, Z., Ould-Abdesslam, D.: Optimized time\u2013frequency features and semi-supervised SVM to heartbeat classification. SIViP 14, 1471\u20131478 (2020)","journal-title":"SIViP"},{"issue":"8","key":"2113_CR29","first-page":"1063","volume":"3","author":"S Sharma","year":"2013","unstructured":"Sharma, S., Mehra, R.: Image restoration using modified Lucy Richardson algorithm in the presence of Gaussian and motion blur. Adv. Electron. Electric Eng. 3(8), 1063\u20131070 (2013)","journal-title":"Adv. Electron. Electric Eng."},{"key":"2113_CR30","doi-asserted-by":"publisher","first-page":"1539","DOI":"10.1007\/s00226-018-1049-3","volume":"52","author":"AH Lydia","year":"2018","unstructured":"Lydia, A.H., Nenny Ruthfalydia, R., Anis Salwa, M.K., Norrima, M., Rubiyah, Y.: Denoising module for wood texture images. Wood Sci. Technol. 52, 1539\u20131554 (2018)","journal-title":"Wood Sci. Technol."},{"key":"2113_CR31","doi-asserted-by":"publisher","first-page":"1065","DOI":"10.1007\/s00226-020-01196-z","volume":"54","author":"DV Souza","year":"2020","unstructured":"Souza, D.V., Santos, J.X., Vieira, H.C., Naide, T.W., Nisgoski, S., Oliveira, L.E.S.: An automatic recognition system of Brazilian flora species based on textural features of macroscopic images of wood. Wood Sci. Technol. 54, 1065\u20131090 (2020)","journal-title":"Wood Sci. Technol."}],"container-title":["Signal, Image and Video Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-021-02113-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11760-021-02113-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-021-02113-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T18:49:28Z","timestamp":1726512568000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11760-021-02113-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,22]]},"references-count":31,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2022,9]]}},"alternative-id":["2113"],"URL":"https:\/\/doi.org\/10.1007\/s11760-021-02113-y","relation":{},"ISSN":["1863-1703","1863-1711"],"issn-type":[{"type":"print","value":"1863-1703"},{"type":"electronic","value":"1863-1711"}],"subject":[],"published":{"date-parts":[[2022,1,22]]},"assertion":[{"value":"16 August 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 December 2021","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 December 2021","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 January 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declared that there is no conflict of interest. Conflict of interest: The authors declared that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}