{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T08:30:36Z","timestamp":1725870636127},"reference-count":23,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2022,1,24]],"date-time":"2022-01-24T00:00:00Z","timestamp":1642982400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,24]],"date-time":"2022-01-24T00:00:00Z","timestamp":1642982400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SIViP"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1007\/s11760-021-02087-x","type":"journal-article","created":{"date-parts":[[2022,1,24]],"date-time":"2022-01-24T13:11:09Z","timestamp":1643029869000},"page":"1355-1362","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Classroom face detection algorithm based on improved MTCNN"],"prefix":"10.1007","volume":"16","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5217-0381","authenticated-orcid":false,"given":"Meihua","family":"Gu","sequence":"first","affiliation":[]},{"given":"Xiaolong","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Feng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,24]]},"reference":[{"key":"2087_CR1","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1016\/j.ins.2021.03.027","volume":"568","author":"B Gza","year":"2021","unstructured":"Gza, B., Yx, C.: Efficient face detection and tracking in video sequences based on deep learning. Inf. Sci. 568, 265\u2013285 (2021)","journal-title":"Inf. Sci."},{"key":"2087_CR2","doi-asserted-by":"crossref","unstructured":"Li, C., Li, R., Sun, J.: CNN face live detection algorithm based on binocular camera. J. Phys. Conf. Ser. 1881(2): 022015 (7pp) (2021)","DOI":"10.1088\/1742-6596\/1881\/2\/022015"},{"key":"2087_CR3","doi-asserted-by":"crossref","unstructured":"Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G.: A convolutional neural network cascade for face detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5325\u20135334 (2015)","DOI":"10.1109\/CVPR.2015.7299170"},{"key":"2087_CR4","doi-asserted-by":"crossref","unstructured":"Ranjan, R., Patel, V.M., Chellappa, R.: A deep pyramid deformable part model for face detection. In: 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1\u20138 (2015)","DOI":"10.1109\/BTAS.2015.7358755"},{"issue":"9","key":"2087_CR5","doi-asserted-by":"publisher","first-page":"1627","DOI":"10.1109\/TPAMI.2009.167","volume":"32","author":"PF Felzenszwalb","year":"2009","unstructured":"Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627\u20131645 (2009)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"2087_CR6","doi-asserted-by":"crossref","unstructured":"Yang, S., Luo, P., Loy, C.C., Tang, X.: From facial parts responses to face detection: a deep learning approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3676\u20133684 (2015)","DOI":"10.1109\/ICCV.2015.419"},{"key":"2087_CR7","doi-asserted-by":"crossref","unstructured":"Tan, T.H., Kuo, T.Y., Liu, H.: Intelligent lecturer tracking and capturing system based on face detection and wireless sensing technology. Sensors (Basel, Switzerland) 19(19) (2019)","DOI":"10.3390\/s19194193"},{"issue":"18","key":"2087_CR8","doi-asserted-by":"publisher","first-page":"25321","DOI":"10.1007\/s11042-019-7651-z","volume":"78","author":"SK Gupta","year":"2019","unstructured":"Gupta, S.K., Ashwin, T.S., Guddeti, R.: Students\u2019 affective content analysis in smart classroom environment using deep learning techniques. Multimed. Tools Appl. 78(18), 25321\u201325348 (2019)","journal-title":"Multimed. Tools Appl."},{"key":"2087_CR9","doi-asserted-by":"crossref","unstructured":"Li, T.: Research on intelligent classroom attendance management based on feature recognition. J. Ambient Intell. Humaniz. Comput. 1\u20138 (2021)","DOI":"10.1007\/s12652-021-03042-x"},{"issue":"10","key":"2087_CR10","doi-asserted-by":"publisher","first-page":"1499","DOI":"10.1109\/LSP.2016.2603342","volume":"23","author":"K Zhang","year":"2016","unstructured":"Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499\u20131503 (2016)","journal-title":"IEEE Signal Process. Lett."},{"issue":"11","key":"2087_CR11","doi-asserted-by":"publisher","first-page":"2435","DOI":"10.1049\/iet-ipr.2019.0141","volume":"14","author":"LH Ma","year":"2020","unstructured":"Ma, L.H., Fan, H.Y., Lu, Z.M., et al.: Acceleration of multi-task cascaded convolutional networks. IET Image Process. 14(11), 2435\u20132441 (2020)","journal-title":"IET Image Process."},{"issue":"1","key":"2087_CR12","doi-asserted-by":"publisher","first-page":"012066","DOI":"10.1088\/1742-6596\/1518\/1\/012066","volume":"1518","author":"J Du","year":"2020","unstructured":"Du, J.: High-precision portrait classification based on MTCNN and its application on similarity judgement. J. Phys. Conf. Ser. 1518(1), 012066 (2020)","journal-title":"J. Phys. Conf. Ser."},{"key":"2087_CR13","doi-asserted-by":"crossref","unstructured":"Bodla, N., Singh, B., Chellappa, R., Davis, L. S.: Soft-NMS-improving object detection with one line of code. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5561\u20135569 (2017)","DOI":"10.1109\/ICCV.2017.593"},{"issue":"1","key":"2087_CR14","doi-asserted-by":"publisher","first-page":"37","DOI":"10.22606\/fsp.2020.41006","volume":"4","author":"H Ku","year":"2020","unstructured":"Ku, H., Dong, W.: Face recognition based on MTCNN and convolutional neural network. Front. Signal Process. 4(1), 37\u201342 (2020)","journal-title":"Front. Signal Process."},{"issue":"11","key":"2087_CR15","doi-asserted-by":"publisher","first-page":"4284","DOI":"10.1109\/TCSVT.2019.2955463","volume":"30","author":"H Mo","year":"2019","unstructured":"Mo, H., Liu, L., Zhu, W., Li, Q., Liu, H., Yin, S., Wei, S.: A multi-task hardwired accelerator for face detection and alignment. IEEE Trans. Circuits Syst. Video Technol. 30(11), 4284\u20134298 (2019)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"2087_CR16","doi-asserted-by":"crossref","unstructured":"Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1222\u20131230 (2017)","DOI":"10.1109\/CVPR.2017.211"},{"key":"2087_CR17","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1016\/j.patrec.2020.03.002","volume":"133","author":"J Luo","year":"2020","unstructured":"Luo, J., Liu, J., Lin, J., Wang, Z.: A lightweight face detector by integrating the convolutional neural network with the image pyramid. Pattern Recognit. Lett. 133, 180\u2013187 (2020)","journal-title":"Pattern Recognit. Lett."},{"key":"2087_CR18","unstructured":"Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315\u2013323 (2011)"},{"issue":"2","key":"2087_CR19","doi-asserted-by":"publisher","first-page":"307","DOI":"10.1007\/s11760-011-0239-3","volume":"7","author":"M Hassaballah","year":"2013","unstructured":"Hassaballah, M., Murakami, K., Ido, S.: Face detection evaluation: a new approach based on the golden ratio Phi. Signal Image Video Process 7(2), 307\u2013316 (2013)","journal-title":"Signal Image Video Process"},{"key":"2087_CR20","doi-asserted-by":"publisher","first-page":"4806","DOI":"10.1109\/ACCESS.2019.2962617","volume":"8","author":"Y Ho","year":"2019","unstructured":"Ho, Y., Wookey, S.: The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8, 4806\u20134813 (2019)","journal-title":"IEEE Access"},{"issue":"8","key":"2087_CR21","doi-asserted-by":"publisher","first-page":"1334","DOI":"10.1109\/TPAMI.2005.165","volume":"27","author":"L Wang","year":"2005","unstructured":"Wang, L., Zhang, Y., Feng, J.: On the Euclidean distance of images. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1334\u20131339 (2005)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"2087_CR22","doi-asserted-by":"crossref","unstructured":"Yang, S., Luo, P., Loy, C.C., Tang, X.: A face detection benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525\u20135533 (2016)","DOI":"10.1109\/CVPR.2016.596"},{"key":"2087_CR23","unstructured":"Jain, V., Learned-Miller, E.: Fddb: a benchmark for face detection in unconstrained settings. 2(5) (2010)"}],"container-title":["Signal, Image and Video Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-021-02087-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11760-021-02087-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-021-02087-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,19]],"date-time":"2022-05-19T06:20:57Z","timestamp":1652941257000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11760-021-02087-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,24]]},"references-count":23,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2022,7]]}},"alternative-id":["2087"],"URL":"https:\/\/doi.org\/10.1007\/s11760-021-02087-x","relation":{},"ISSN":["1863-1703","1863-1711"],"issn-type":[{"value":"1863-1703","type":"print"},{"value":"1863-1711","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,1,24]]},"assertion":[{"value":"30 June 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 October 2021","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 November 2021","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 January 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}