{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,20]],"date-time":"2024-07-20T22:49:05Z","timestamp":1721515745143},"reference-count":38,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2014,11,13]],"date-time":"2014-11-13T00:00:00Z","timestamp":1415836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SIViP"],"published-print":{"date-parts":[[2016,1]]},"DOI":"10.1007\/s11760-014-0709-5","type":"journal-article","created":{"date-parts":[[2014,11,14]],"date-time":"2014-11-14T14:30:13Z","timestamp":1415975413000},"page":"113-120","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":23,"title":["Advanced K-means clustering algorithm for large ECG data sets based on a collaboration of compressed sensing theory and K-SVD approach"],"prefix":"10.1007","volume":"10","author":[{"given":"Mohammadreza","family":"Balouchestani","sequence":"first","affiliation":[]},{"given":"Sridhar","family":"Krishnan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2014,11,13]]},"reference":[{"key":"709_CR1","doi-asserted-by":"crossref","unstructured":"Balouchestani, M., Raahemifar, K., Krishnan, S.: High-resolution QRS detection algorithm for wireless ECG systems based on compressed sensing theory. In: IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1326\u20131329 (2013)","DOI":"10.1109\/MWSCAS.2013.6674900"},{"key":"709_CR2","doi-asserted-by":"crossref","unstructured":"Ambat, S., Chatterjee, S., Hari, K.: Fusion of algorithms for compressed sensing. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5860\u20135864, May 2013","DOI":"10.1109\/ICASSP.2013.6638788"},{"key":"709_CR3","doi-asserted-by":"crossref","unstructured":"Balouchestani, M., Raahemifar, K., Krishnan, S.: A high reliability detection algorithm for wireless ECG systems based on compressed sensing theory. In: 35th IEEE Annual International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 4722\u20134725 (2013)","DOI":"10.1109\/EMBC.2013.6610602"},{"key":"709_CR4","doi-asserted-by":"crossref","unstructured":"Ansari-Ram, F., Hosseini-Khayat, S.: ECG signal compression using compressed sensing with nonuniform binary matrices. In: 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP), pp. 305\u2013309, May 2012","DOI":"10.1109\/AISP.2012.6313763"},{"key":"709_CR5","doi-asserted-by":"crossref","unstructured":"Balouchestani, M., Raahemifar, K., Krishnan, S.: New sampling approach for wireless ecg systems with compressed sensing theory. In: IEEE International Symposium on Medical Measurements and Applications Proceedings (MeMeA), pp. 213\u2013218 (2013)","DOI":"10.1109\/MeMeA.2013.6549738"},{"key":"709_CR6","doi-asserted-by":"crossref","unstructured":"Banerjee, A., Halder, A.: An efficient image compression algorithm for almost dual-color image based on k-means clustering, bit-map generation and RLE. In: International Conference on Computer and Communication Technology (ICCCT), pp. 201\u2013205, Sept 2010","DOI":"10.1109\/ICCCT.2010.5640529"},{"issue":"2","key":"709_CR7","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1109\/TBCAS.2012.2193668","volume":"6","author":"A Dixon","year":"2012","unstructured":"Dixon, A., Allstot, E., Gangopadhyay, D., Allstot, D.: Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 6(2), 156\u2013166 (2012)","journal-title":"IEEE Trans. Biomed. Circuits Syst."},{"key":"709_CR8","doi-asserted-by":"crossref","unstructured":"Karras, D.: Improved video compression schemes of medical image sequences based on the discrete wavelet transformation of principal textural regions and intelligent restoration techniques. In: IEEE International Symposium on Intelligent Signal Processing, WISP, pp. 1\u20136, Oct 2007","DOI":"10.1109\/WISP.2007.4447512"},{"issue":"11","key":"709_CR9","doi-asserted-by":"crossref","first-page":"3937","DOI":"10.1109\/TGRS.2008.2001386","volume":"46","author":"C Yang","year":"2008","unstructured":"Yang, C., Lu, L., Lin, H., Guan, R., Shi, X., Liang, Y.: A fuzzy-statistics-based principal component analysis (FS-PCA) method for multispectral image enhancement and display. IEEE Trans. Geosci. Remote Sens. 46(11), 3937\u20133947 (2008)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"709_CR10","doi-asserted-by":"crossref","unstructured":"Balouchestani, M., Raahemifar, K., Krishnan, S.: Low sampling-rate approach for ECG signals with compressed sensing theory. In: ICME International Conference on Complex Medical Engineering (CME), pp. 70\u201375, May 2013","DOI":"10.1109\/ICCME.2013.6548214"},{"issue":"9","key":"709_CR11","doi-asserted-by":"crossref","first-page":"2456","DOI":"10.1109\/TBME.2011.2156795","volume":"58","author":"H Mamaghanian","year":"2011","unstructured":"Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456\u20132466 (2011)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"709_CR12","doi-asserted-by":"crossref","unstructured":"Balouchestani, M., Raahemifar, K., Krishnan, S.: Low power wireless body area networks with compressed sensing theory. In: IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 916\u2013919, Aug 2012","DOI":"10.1109\/MWSCAS.2012.6292170"},{"key":"709_CR13","doi-asserted-by":"crossref","unstructured":"Mishra, A., Thakkar, F., Modi, C., Kher, R.: ECG signal compression using compressive sensing and wavelet transform. In: Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE, pp. 3404\u20133407, Aug 2012","DOI":"10.1109\/EMBC.2012.6346696"},{"key":"709_CR14","doi-asserted-by":"crossref","unstructured":"Fira, M., Goras, L., Barabasa, C.: Reconstruction of compressed sensed ECG signals using patient specific dictionaries. In: International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1\u20134, July 2013","DOI":"10.1109\/ISSCS.2013.6651246"},{"key":"709_CR15","doi-asserted-by":"crossref","unstructured":"Gurkan, H., Guz, U., Yarman, B.: A novel electroencephalogram (EEG) data compression technique. In: IEEE 16th Signal Processing, Communication and Applications Conference, SIU. pp. 1\u20134, Apr 2008","DOI":"10.1109\/SIU.2008.4632749"},{"key":"709_CR16","unstructured":"Selvakumar, J., Lakshmi, A., Arivoli, T.: Brain tumor segmentation and its area calculation in brain images using k-mean clustering and fuzzy c-mean algorithm. In: International Conference on Advances in Engineering, Science and Management (ICAESM), pp. 186\u2013190, Mar 2012"},{"key":"709_CR17","unstructured":"Lin, S.: Comparison of kohonen feature map against k-mean clustering algorithm with application to reversible image compression. In Circuits and System, 1991. Conference Proceedings, China, International Conference, vol. 2, pp. 808\u2013811 June 1991"},{"key":"709_CR18","doi-asserted-by":"crossref","unstructured":"Darko, F., Denis, S., Mario, Z.: Human movement detection based on acceleration measurements and k-nn classification. In: The International Conference on Computer as a Tool EUROCON, pp. 589\u2013594, Sept 2007","DOI":"10.1109\/EURCON.2007.4400451"},{"key":"709_CR19","unstructured":"Tang, P.-H., Tseng, M.-H.: Medical data mining using bga and rga for weighting of features in fuzzy k-nn classification. In: International Conference on Machine Learning and Cybernetics vol. 5, pp. 3070\u20133075, July 2009"},{"key":"709_CR20","doi-asserted-by":"crossref","unstructured":"Le Roux, J., Gueguen, C.: A fixed point computation of partial correlation coefficients in linear prediction. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP\u201977, vol. 2, pp. 742\u2013743, May 1977","DOI":"10.1109\/ICASSP.1977.1170355"},{"issue":"1","key":"709_CR21","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1109\/TPWRD.2007.911125","volume":"23","author":"S Mishra","year":"2008","unstructured":"Mishra, S., Bhende, C.N., Panigrahi, K.: Detection and classification of power quality disturbances using S-transform and probabilistic neural network. IEEE Trans. Power Deliv. 23(1), 280\u2013287 (2008)","journal-title":"IEEE Trans. Power Deliv."},{"key":"709_CR22","doi-asserted-by":"crossref","unstructured":"Schmeelk, S., Schmeelk, J.: Image authenticity implementing principal component analysis (pca). In: 10th International Conference and Expo on Emerging Technologies for a Smarter World (CEWIT), pp. 1\u20134, Oct 2013","DOI":"10.1109\/CEWIT.2013.6713751"},{"key":"709_CR23","doi-asserted-by":"crossref","unstructured":"Kumar, V., Sachdeva, J., Gupta, I., Khandelwal, N., Ahuja, C.: Classification of brain tumors using PCA-ANN. In: Information and Communication Technologies (WICT), World Congress, pp. 1079\u20131083, Dec 2011","DOI":"10.1109\/WICT.2011.6141398"},{"key":"709_CR24","doi-asserted-by":"crossref","unstructured":"Sinha, A., Chowdoju, K.: Power system fault detection classification based on pca and pnn. In: International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT), pp. 111\u2013115, Mar 2011","DOI":"10.1109\/ICETECT.2011.5760101"},{"key":"709_CR25","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Barner, K.: Locality constrained dictionary learning for nonlinear dimensionality reduction. IEEE Signal Process. Lett. 20(4), 335\u2013338 (2013)","DOI":"10.1109\/LSP.2013.2246513"},{"key":"709_CR26","doi-asserted-by":"crossref","unstructured":"Gurkan, H., Guz, U.,Siddik Yarman, B.: Eeg signal compression based on classified signature and envelope vector sets. In: ECCTD, 18th European Conference on Circuit Theory and Design, 2007, pp. 420\u2013423, Aug 2007","DOI":"10.1109\/ECCTD.2007.4529622"},{"key":"709_CR27","doi-asserted-by":"crossref","unstructured":"Zhou, Q.: Study on ecg data lossless compression algorithm based on k-means cluster. In: International Conference on Future Computer and Communication, FCC\u201909. pp. 91\u201393, June 2009","DOI":"10.1109\/FCC.2009.54"},{"key":"709_CR28","doi-asserted-by":"crossref","unstructured":"Wang, J., Su, X.: An improved k-means clustering algorithm. In: IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 44\u201346, May 2011","DOI":"10.1109\/ICCSN.2011.6014384"},{"key":"709_CR29","doi-asserted-by":"crossref","unstructured":"Ruta, A., Porikli, F.: Compressive clustering of high-dimensional data. In: 11th International Conference on Machine Learning and Applications (ICMLA), 2012, vol. 1, pp. 380\u2013385, Dec 2012","DOI":"10.1109\/ICMLA.2012.69"},{"key":"709_CR30","unstructured":"Anaraki, F., Hughes, S.: Compressive k-SVD. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5469\u20135473, May 2013"},{"issue":"11","key":"709_CR31","doi-asserted-by":"crossref","first-page":"4311","DOI":"10.1109\/TSP.2006.881199","volume":"54","author":"M Aharon","year":"2006","unstructured":"Aharon, M., Elad, M., Bruckstein, A.: k-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311\u20134322 (2006)","journal-title":"IEEE Trans. Signal Process."},{"key":"709_CR32","doi-asserted-by":"crossref","unstructured":"Peng, G.-J., Hwang, W.-L.: A proximal method for the k-SVD dictionary learning. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1\u20136, Sept 2013","DOI":"10.1109\/MLSP.2013.6661955"},{"issue":"2","key":"709_CR33","doi-asserted-by":"crossref","first-page":"520","DOI":"10.1109\/72.839021","volume":"11","author":"D-C Park","year":"2000","unstructured":"Park, D.-C.: Centroid neural network for unsupervised competitive learning. IEEE Trans. Neural Netw. 11(2), 520\u2013528 (2000)","journal-title":"IEEE Trans. Neural Netw."},{"key":"709_CR34","doi-asserted-by":"crossref","unstructured":"Mailhe, B., Barchiesi, D., Plumbley, M.: INK-SVD: Learning incoherent dictionaries for sparse representations. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3573\u20133576, Mar 2012","DOI":"10.1109\/ICASSP.2012.6288688"},{"key":"709_CR35","doi-asserted-by":"crossref","unstructured":"Ribhu, R., Ghosh, D.: Dictionary design for sparse signal representations using k-SVD with sparse bayesian learning. In: IEEE 11th International Conference on Signal Processing (ICSP), vol. 1, pp. 21\u201325, Oct 2012","DOI":"10.1109\/ICoSP.2012.6491639"},{"key":"709_CR36","doi-asserted-by":"crossref","unstructured":"Rubinstein, R., Faktor, T., Elad, M.: K-SVD dictionary-learning for the analysis sparse model. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5405\u20135408, Mar 2012","DOI":"10.1109\/ICASSP.2012.6289143"},{"issue":"3","key":"709_CR37","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1109\/TSP.2012.2226445","volume":"61","author":"R Rubinstein","year":"2013","unstructured":"Rubinstein, R., Peleg, T., Elad, M.: Analysis k-SVD: a dictionary-learning algorithm for the analysis sparse model. IEEE Trans. Signal Process. 61(3), 661\u2013677 (2013)","journal-title":"IEEE Trans. Signal Process."},{"key":"709_CR38","doi-asserted-by":"crossref","unstructured":"Kiranyaz, S., Ince, T., Pulkkinen, J., Gabbouj, M. : A personalized classification system for holter registers. In: Annual International Conference of the IEEE Engineering Medicine and Biology Society, EMBC 2009, pp. 1883\u20131888, Sept 2009","DOI":"10.1109\/IEMBS.2009.5333872"}],"container-title":["Signal, Image and Video Processing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-014-0709-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11760-014-0709-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11760-014-0709-5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,17]],"date-time":"2019-08-17T07:15:33Z","timestamp":1566026133000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11760-014-0709-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,11,13]]},"references-count":38,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2016,1]]}},"alternative-id":["709"],"URL":"https:\/\/doi.org\/10.1007\/s11760-014-0709-5","relation":{},"ISSN":["1863-1703","1863-1711"],"issn-type":[{"value":"1863-1703","type":"print"},{"value":"1863-1711","type":"electronic"}],"subject":[],"published":{"date-parts":[[2014,11,13]]}}}