{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,2,16]],"date-time":"2024-02-16T02:40:20Z","timestamp":1708051220781},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,3,23]],"date-time":"2021-03-23T00:00:00Z","timestamp":1616457600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,3,23]],"date-time":"2021-03-23T00:00:00Z","timestamp":1616457600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Data Anal Classif"],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1007\/s11634-021-00439-6","type":"journal-article","created":{"date-parts":[[2021,3,23]],"date-time":"2021-03-23T22:02:42Z","timestamp":1616536962000},"page":"937-956","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Nonlinear dimension reduction for conditional quantiles"],"prefix":"10.1007","volume":"15","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5044-0969","authenticated-orcid":false,"given":"Eliana","family":"Christou","sequence":"first","affiliation":[]},{"given":"Annabel","family":"Settle","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Artemiou","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,23]]},"reference":[{"key":"439_CR1","first-page":"821","volume":"25","author":"M Aizerman","year":"1964","unstructured":"Aizerman M, Braverman E, Rozonoer L (1964) Theoretical foundations of the potential function method in pattern recognition learning. Autom Remote Control 25:821\u2013837","journal-title":"Autom Remote Control"},{"key":"439_CR2","unstructured":"Akaho S (2001) Kernel method for canonical correlation analysis. In Proceedings of the international meeting of the psychometric society (IMPS2001)"},{"issue":"3","key":"439_CR3","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1090\/S0002-9947-1950-0051437-7","volume":"68","author":"N Aronszajn","year":"1950","unstructured":"Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337\u2013404","journal-title":"Trans Am Math Soc"},{"key":"439_CR4","first-page":"1","volume":"3","author":"FR Bach","year":"2002","unstructured":"Bach FR, Jordan MI (2002) Kernel independent component analysis. J Mach Learn Res 3:1\u201348","journal-title":"J Mach Learn Res"},{"issue":"10","key":"439_CR5","doi-asserted-by":"publisher","first-page":"2385","DOI":"10.1162\/089976600300014980","volume":"12","author":"G Baudat","year":"2000","unstructured":"Baudat G, Annouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385\u20132404","journal-title":"Neural Comput"},{"issue":"2","key":"439_CR6","doi-asserted-by":"publisher","first-page":"760","DOI":"10.1214\/aos\/1176348119","volume":"19","author":"P Chaudhuri","year":"1991","unstructured":"Chaudhuri P (1991) Nonparametric estimates of regression quantiles and their local Bahadur representation. Ann Stat 19(2):760\u2013777","journal-title":"Ann Stat"},{"key":"439_CR7","doi-asserted-by":"publisher","first-page":"677","DOI":"10.1007\/s11222-019-09915-8","volume":"30","author":"E Christou","year":"2020","unstructured":"Christou E (2020) Central quantile subspace. Stat Comput 30:677\u2013695","journal-title":"Stat Comput"},{"key":"439_CR8","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1016\/j.jmva.2016.05.010","volume":"150","author":"E Christou","year":"2016","unstructured":"Christou E, Akritas MG (2016) Single index quantile regression for heteroscedastic data. J Multivar Anal 150:169\u2013182","journal-title":"J Multivar Anal"},{"key":"439_CR9","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/S0925-2312(02)00601-X","volume":"51","author":"K Duan","year":"2003","unstructured":"Duan K, Keerthi SS, Poo AN (2003) Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51:41\u201359","journal-title":"Neurocomputing"},{"key":"439_CR10","first-page":"361","volume":"8","author":"K Fukumizu","year":"2007","unstructured":"Fukumizu K, Bach FR, Gretton A (2007) Statistical consistency of kernel canonical correlation analysis. J Mach Learn Res 8:361\u2013383","journal-title":"J Mach Learn Res"},{"issue":"1","key":"439_CR11","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1017\/S0266466611000132","volume":"28","author":"E Guerre","year":"2012","unstructured":"Guerre E, Sabbah C (2012) Uniform bias study and Bahadur representation for local polynomial estimators of the conditional quantile function. Econom Theory 28(1):87\u2013129","journal-title":"Econom Theory"},{"key":"439_CR12","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/0095-0696(78)90006-2","volume":"5","author":"D Harrison","year":"1978","unstructured":"Harrison D, Rubinfeld DL (1978) Hedonic prices and the demand for clean air. J Environ Econ Manag 5:81\u2013102","journal-title":"J Environ Econ Manag"},{"key":"439_CR13","doi-asserted-by":"publisher","first-page":"375","DOI":"10.1007\/s11634-015-0206-x","volume":"10","author":"H Hashem","year":"2016","unstructured":"Hashem H, Vinciotti V, Alhamzawi R, Keming Y (2016) Quantile regression with group lasso for classification. Adv Data Anal Classif 10:375\u2013390","journal-title":"Adv Data Anal Classif"},{"key":"439_CR14","doi-asserted-by":"publisher","first-page":"1667","DOI":"10.1162\/089976603321891855","volume":"15","author":"SS Keerthi","year":"2003","unstructured":"Keerthi SS, Lin CJ (2003) Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 15:1667\u20131689","journal-title":"Neural Comput"},{"issue":"1","key":"439_CR15","doi-asserted-by":"publisher","first-page":"33","DOI":"10.2307\/1913643","volume":"46","author":"R Koenker","year":"1978","unstructured":"Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46(1):33\u201350","journal-title":"Econometrica"},{"issue":"448","key":"439_CR16","doi-asserted-by":"publisher","first-page":"1296","DOI":"10.1080\/01621459.1999.10473882","volume":"94","author":"R Koenker","year":"1999","unstructured":"Koenker R, Machado J (1999) Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc 94(448):1296\u20131310","journal-title":"J Am Stat Assoc"},{"issue":"4","key":"439_CR17","doi-asserted-by":"publisher","first-page":"730","DOI":"10.1017\/S0266466611000788","volume":"28","author":"E Kong","year":"2012","unstructured":"Kong E, Xia Y (2012) A single-index quantile regression model and its estimation. Econom Theory 28(4):730\u2013768","journal-title":"Econom Theory"},{"issue":"4","key":"439_CR18","doi-asserted-by":"publisher","first-page":"1657","DOI":"10.1214\/14-AOS1242","volume":"42","author":"E Kong","year":"2014","unstructured":"Kong E, Xia Y (2014) An adaptive composite quantile approach to dimension reduction. Ann Stat 42(4):1657\u20131688","journal-title":"Ann Stat"},{"issue":"5","key":"439_CR19","doi-asserted-by":"publisher","first-page":"1529","DOI":"10.1017\/S0266466609990661","volume":"26","author":"E Kong","year":"2010","unstructured":"Kong E, Linton O, Xia Y (2010) Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model. Econom Theory 26(5):1529\u20131564","journal-title":"Econom Theory"},{"issue":"3","key":"439_CR20","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1002\/jae.843","volume":"21","author":"G Kordas","year":"2006","unstructured":"Kordas G (2006) Smoothed binary regression quantiles. J Appl Econ 21(3):387\u2013407","journal-title":"J Appl Econ"},{"issue":"5","key":"439_CR21","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1142\/S012906570000034X","volume":"10","author":"PL Lai","year":"2000","unstructured":"Lai PL, Fyfe C (2000) Kernel and nonlinear canonical correlation analysis. Int J Neural Syst 10(5):365\u2013377","journal-title":"Int J Neural Syst"},{"issue":"414","key":"439_CR22","doi-asserted-by":"publisher","first-page":"316","DOI":"10.1080\/01621459.1991.10475035","volume":"86","author":"KC Li","year":"1991","unstructured":"Li KC (1991) Sliced inverse regression for dimension reduction. J Am Stat Assoc 86(414):316\u2013327","journal-title":"J Am Stat Assoc"},{"issue":"6","key":"439_CR23","first-page":"3182","volume":"39","author":"B Li","year":"2011","unstructured":"Li B, Artemiou A, Li L (2011) Principal support vector machines for linear and nonlinear sufficient dimension reduction. Ann Stat 39(6):3182\u20133210","journal-title":"Ann Stat"},{"issue":"1","key":"439_CR24","doi-asserted-by":"publisher","first-page":"382","DOI":"10.1214\/13-AOS1195","volume":"42","author":"W Luo","year":"2014","unstructured":"Luo W, Li B, Yin X (2014) On efficient dimension reduction with respect to a statistical functional of interest. Ann Stat 42(1):382\u2013412","journal-title":"Ann Stat"},{"key":"439_CR25","first-page":"41","volume":"9","author":"S Mika","year":"1999","unstructured":"Mika S, R\u00e4tsch G, Weston J, Sch\u00f6lkopf B, M\u00fcller KR (1999) Fisher discriminant analysis with kernel. Proceed IEEE Neural Netw Signal Proc Workshop 9:41\u201348","journal-title":"Proceed IEEE Neural Netw Signal Proc Workshop"},{"issue":"442","key":"439_CR26","doi-asserted-by":"publisher","first-page":"605","DOI":"10.1080\/01621459.1998.10473714","volume":"93","author":"JD Opsomer","year":"1998","unstructured":"Opsomer JD, Ruppert D (1998) A fully automated bandwidth selection method for fitting additive models. J Am Stat Assoc 93(442):605\u2013619","journal-title":"J Am Stat Assoc"},{"key":"439_CR27","unstructured":"Roth V, Steinhage V (2000) Nonlinear discriminant analysis using kernel functions. In advances in neural information processing systems, pages 568\u2013574, MIT Press, Cambridge"},{"issue":"5","key":"439_CR28","doi-asserted-by":"publisher","first-page":"1299","DOI":"10.1162\/089976698300017467","volume":"10","author":"B Sch\u00f6lkopf","year":"1998","unstructured":"Sch\u00f6lkopf B, Smola AJ, M\u00fcller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299\u20131319","journal-title":"Neural Comput"},{"key":"439_CR29","doi-asserted-by":"crossref","unstructured":"Sch\u00f6lkopf B, Smola AJ, M\u00fcller KR (1999) Kernel principal component analysis. Advances in kernel methods: support vector learning, pp. 327\u2013352, MIT Press, Cambridge","DOI":"10.7551\/mitpress\/1130.003.0026"},{"key":"439_CR30","volume-title":"Kernel methods in computational biology","year":"2004","unstructured":"Sch\u00f6lkopf B, Tsuda K, Vert JP (eds) (2004) Kernel methods in computational biology. MIT Press, Cambridge"},{"key":"439_CR31","first-page":"262","volume":"10","author":"VG Sigillito","year":"1989","unstructured":"Sigillito VG, Wing SP, Hutton LV, Baker KB (1989) Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Tech Dig 10:262\u2013266","journal-title":"Johns Hopkins APL Tech Dig"},{"key":"439_CR32","first-page":"1231","volume":"7","author":"I Takeuchi","year":"2006","unstructured":"Takeuchi I, Le QV, Sears T, Smola AJ (2006) Nonparametric quantile regression. J Mach Learn Res 7:1231\u20131264","journal-title":"J Mach Learn Res"},{"issue":"2","key":"439_CR33","doi-asserted-by":"publisher","first-page":"606","DOI":"10.1214\/aos\/1176347128","volume":"17","author":"YK Truong","year":"1989","unstructured":"Truong YK (1989) Asymptotic properties of kernel estimators based on local medians. Ann Stat 17(2):606\u2013617","journal-title":"Ann Stat"},{"key":"439_CR34","first-page":"2114","volume":"12","author":"C Wang","year":"2018","unstructured":"Wang C, Shin SJ, Wu Y (2018) Principal quantile regression for sufficient dimension reduction with heteroscedasticity. Electron J Stat 12:2114\u20132140","journal-title":"Electron J Stat"},{"issue":"3","key":"439_CR35","doi-asserted-by":"publisher","first-page":"590","DOI":"10.1198\/106186008X345161","volume":"17","author":"HM Wu","year":"2008","unstructured":"Wu HM (2008) Kernel sliced inverse regression with applications to classification. J Comput Graph Stat 17(3):590\u2013610","journal-title":"J Comput Graph Stat"},{"issue":"7","key":"439_CR36","doi-asserted-by":"publisher","first-page":"1607","DOI":"10.1016\/j.jmva.2010.02.003","volume":"101","author":"TZ Wu","year":"2010","unstructured":"Wu TZ, Yu K, Yu Y (2010) Single-index quantile regression. J Multivar Anal 101(7):1607\u20131621","journal-title":"J Multivar Anal"},{"key":"439_CR37","doi-asserted-by":"crossref","unstructured":"Wu Q. Liang F, Mukherjee S (2013) Kernel sliced inverse regression: regularization and consistency. Abs Appl Anal, Volume 2013, Special Issue, Article ID 540725, 11 pages","DOI":"10.1155\/2013\/540725"},{"issue":"11","key":"439_CR38","doi-asserted-by":"publisher","first-page":"1590","DOI":"10.1109\/TKDE.2008.232","volume":"21","author":"YR Yeh","year":"2009","unstructured":"Yeh YR, Huang SY, Lee YJ (2009) Nonlinear dimension reduction with kernel sliced inverse regression. IEEE Trans Knowl Data Eng 21(11):1590\u20131603","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"441","key":"439_CR39","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1080\/01621459.1998.10474104","volume":"93","author":"K Yu","year":"1998","unstructured":"Yu K, Jones MC (1998) Local linear quantile regression. J Am Stat Assoc 93(441):228\u2013237","journal-title":"J Am Stat Assoc"},{"issue":"492","key":"439_CR40","doi-asserted-by":"publisher","first-page":"1455","DOI":"10.1198\/jasa.2010.tm09666","volume":"105","author":"LP Zhu","year":"2010","unstructured":"Zhu LP, Zhu LX, Feng ZH (2010) Dimension reduction in regression through cumulative slicing estimation. J Am Stat Assoc 105(492):1455\u20131466","journal-title":"J Am Stat Assoc"}],"container-title":["Advances in Data Analysis and Classification"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-021-00439-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11634-021-00439-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-021-00439-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,22]],"date-time":"2022-12-22T07:47:46Z","timestamp":1671695266000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11634-021-00439-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3,23]]},"references-count":40,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2021,12]]}},"alternative-id":["439"],"URL":"https:\/\/doi.org\/10.1007\/s11634-021-00439-6","relation":{},"ISSN":["1862-5347","1862-5355"],"issn-type":[{"value":"1862-5347","type":"print"},{"value":"1862-5355","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,3,23]]},"assertion":[{"value":"9 September 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 March 2021","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 March 2021","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 March 2021","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}