{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T15:27:23Z","timestamp":1726414043011},"reference-count":29,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2016,8,9]],"date-time":"2016-08-09T00:00:00Z","timestamp":1470700800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Data Anal Classif"],"published-print":{"date-parts":[[2016,12]]},"DOI":"10.1007\/s11634-016-0267-5","type":"journal-article","created":{"date-parts":[[2016,8,9]],"date-time":"2016-08-09T12:39:42Z","timestamp":1470746382000},"page":"521-540","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Exponential family mixed membership models for soft\u00a0clustering of multivariate data"],"prefix":"10.1007","volume":"10","author":[{"given":"Arthur","family":"White","sequence":"first","affiliation":[]},{"given":"Thomas Brendan","family":"Murphy","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,8,9]]},"reference":[{"key":"267_CR1","doi-asserted-by":"crossref","unstructured":"Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, 1st edn. Dover Publications, USA","DOI":"10.1115\/1.3625776"},{"key":"267_CR2","doi-asserted-by":"crossref","unstructured":"Airoldi EM, Blei D, Erosheva E, Fienberg SE (2014) Introduction to mixed membership models and methods. In: Airoldi EM, Blei D, Erosheva E, Fienberg SE (eds) Handbook of mixed membership models, Chap. 1. Chapman & Hall\/CRC, Boca Raton","DOI":"10.1201\/b17520"},{"key":"267_CR3","unstructured":"Airoldi EM, Fienberg SE, Joutard C, Love T (2006) Discovering latent patterns with hierarchical Bayesian mixed-membership models. Technical report, Carnegie Mellon University, School of Computer Science, Machine Learning Department. Report no CMU-06-101. http:\/\/ra.adm.cs.cmu.edu\/anon\/ml\/CMU-ML-06-101.pdf"},{"key":"267_CR4","unstructured":"Airoldi EM, Fienberg SE, Joutard C, Love T (2007) Discovering latent patterns with hierarchical Bayesian mixed-membership models. In: Poncelet P, Teisseire M, Masseglia F (eds) Data mining patterns: New methods and applications, Chap. 11. Idea Group Inc., Calgary"},{"issue":"2","key":"267_CR5","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1198\/jcgs.2010.08111","volume":"19","author":"JP Baudry","year":"2010","unstructured":"Baudry JP, Raftery AE, Celeux G, Lo K, Gottardo R (2010) Combining mixture components for clustering. J Comput Gr Stat 19(2):332\u2013353","journal-title":"J Comput Gr Stat"},{"key":"267_CR6","unstructured":"Beal M (2003) Variational algorithms for approximate Bayesian inference. Ph.D. dissertion. University College London"},{"key":"267_CR7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1023\/A:1018510926151","volume":"7","author":"H Bensmail","year":"1997","unstructured":"Bensmail H, Celeux G, Raftery AE, Robert C (1997) Inference in model-based cluster analysis. Stat Comput 7:1\u201310","journal-title":"Stat Comput"},{"issue":"7","key":"267_CR8","doi-asserted-by":"publisher","first-page":"719","DOI":"10.1109\/34.865189","volume":"22","author":"C Biernacki","year":"2000","unstructured":"Biernacki C, Celeux G, Govaert G (2000) Assessing a mixture model for clustering with the integrated completed likelihood. Pattern Anal Mach Intell IEEE Trans 22(7):719\u2013725. doi: 10.1109\/34.865189","journal-title":"Pattern Anal Mach Intell IEEE Trans"},{"key":"267_CR9","volume-title":"Pattern recognition and machine learning","author":"CM Bishop","year":"2006","unstructured":"Bishop CM (2006) Pattern recognition and machine learning. Springer, Secaucus"},{"key":"267_CR10","unstructured":"Blei DM, Lafferty JD (2006) Dynamic topic models. In: Cohen W, Moore A (eds) Proceedings of the 23rd international machine learning conference. http:\/\/icml.cc\/2016\/awards\/dtm.pdf . http:\/\/dl.acm.org\/citation.cfm?id=1143859"},{"issue":"1","key":"267_CR11","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1214\/07-AOAS114","volume":"1","author":"DM Blei","year":"2007","unstructured":"Blei DM, Lafferty JD (2007) A correlated topic model of science. Ann Appl Stat 1(1):17\u201335","journal-title":"Ann Appl Stat"},{"key":"267_CR12","first-page":"993","volume":"3","author":"DM Blei","year":"2003","unstructured":"Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993\u20131022","journal-title":"J Mach Learn Res"},{"issue":"1","key":"267_CR13","doi-asserted-by":"publisher","first-page":"1","DOI":"10.2307\/2984875","volume":"39","author":"AP Dempster","year":"1977","unstructured":"Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM Algorithm. J R Stat Soc Ser B (Methodol) 39(1):1\u201338. doi: 10.2307\/2984875","journal-title":"J R Stat Soc Ser B (Methodol)"},{"issue":"2","key":"267_CR14","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1214\/07-AOAS126","volume":"1","author":"EA Erosheva","year":"2007","unstructured":"Erosheva EA, Fienberg SE, Joutard C (2007) Describing disability through individual-level mixture models for multivariate binary data. Ann Appl Stat 1(2):502\u2013537","journal-title":"Ann Appl Stat"},{"key":"267_CR15","doi-asserted-by":"crossref","first-page":"5220","DOI":"10.1073\/pnas.0307760101","volume":"101","author":"EA Erosheva","year":"2004","unstructured":"Erosheva EA, Fienberg SE, Lafferty J (2004) Mixed-membership models of scientific publications. Proc Natl Acad Sci USA 101:5220\u20135227","journal-title":"Proc Natl Acad Sci USA"},{"key":"267_CR16","doi-asserted-by":"crossref","DOI":"10.1007\/978-94-009-5897-5","volume-title":"Finite mixture distributions","author":"BS Everitt","year":"1981","unstructured":"Everitt BS, Hand DJ (1981) Finite mixture distributions. Chapman and Hall, London"},{"issue":"458","key":"267_CR17","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1198\/016214502760047131","volume":"97","author":"C Fraley","year":"2002","unstructured":"Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97(458):611\u2013631","journal-title":"J Am Stat Assoc"},{"key":"267_CR18","unstructured":"Galyardt A (2014) Interpreting mixed membership models: Implications of Erosheva\u2019s representation theorem. In: Airoldi EM, Blei D, Erosheva E, Fienberg SE (eds) Handbook of mixed membership models, Chap. 11. Chapman & Hall\/CRC, London"},{"issue":"2","key":"267_CR19","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1214\/09-BA410","volume":"4","author":"C Gormley","year":"2009","unstructured":"Gormley C, Murphy TB (2009) A grade of membership model for rank data. Bayesian Anal 4(2):265\u2013296","journal-title":"Bayesian Anal"},{"issue":"2","key":"267_CR20","doi-asserted-by":"crossref","first-page":"427","DOI":"10.2307\/1934352","volume":"54","author":"MO Hill","year":"1973","unstructured":"Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54(2):427\u2013432","journal-title":"Ecology"},{"issue":"4","key":"267_CR21","doi-asserted-by":"crossref","first-page":"2268","DOI":"10.1214\/14-AOAS769","volume":"8","author":"D Manrique-Vallier","year":"2014","unstructured":"Manrique-Vallier D (2014) Longitudinal mixed membership trajectory models for disability survey data. Ann Appl Stat 8(4):2268\u20132291","journal-title":"Ann Appl Stat"},{"key":"267_CR22","unstructured":"McLachlan G, Peel D (2002). Finite mixture models. Wiley, New York"},{"issue":"2","key":"267_CR23","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1198\/tast.2010.09058","volume":"64","author":"JT Ormerod","year":"2010","unstructured":"Ormerod JT, Wand MP (2010) Explaining variational approximations. Am Stat 64(2):140\u2013153","journal-title":"Am Stat"},{"key":"267_CR24","doi-asserted-by":"crossref","first-page":"2005","DOI":"10.1109\/TCBB.2005.29","volume":"2","author":"S Rogers","year":"2005","unstructured":"Rogers S, Girolami M, Campbell C, Breitling R (2005) The latent process decomposition of cDNA microarray datasets. IEEE\/ACM Trans Comput Biol Bioinf 2:2005","journal-title":"IEEE\/ACM Trans Comput Biol Bioinf"},{"issue":"2","key":"267_CR25","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176344136","volume":"6","author":"G Schwarz","year":"1978","unstructured":"Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461\u2013464","journal-title":"Ann Stat"},{"key":"267_CR26","doi-asserted-by":"crossref","unstructured":"van den Boogaart KG, Tolosana-Delgado R (2008) Compositions: A unified r package to analyze compositional data. Comput Geosci 34(4):320\u2013338","DOI":"10.1016\/j.cageo.2006.11.017"},{"key":"267_CR27","doi-asserted-by":"crossref","unstructured":"Vermunt JK, Magidson J (2002) Latent class cluster analysis. In: Hagenaars JA, McCutcheon A (eds) Applied latent class analysis. Cambridge University Press, Cambridge, pp 89\u2013106","DOI":"10.1017\/CBO9780511499531.004"},{"key":"267_CR28","first-page":"1005","volume":"14","author":"C Wang","year":"2013","unstructured":"Wang C, Blei D (2013) Variational inference in nonconjugate models. J Mach Learn Res 14:1005\u20131031","journal-title":"J Mach Learn Res"},{"key":"267_CR29","unstructured":"White A, Chan J, Hayes C, Murphy TB (2012) Mixed membership models for exploring user roles in online fora. In: Ellison N, Shanahan JG, Tufekci Z (eds) Proceedings of the sixth international AAAI conference on weblogs and social media (ICWSM 2012), pp 599\u2013602. http:\/\/www.aaai.org\/ocs\/index.php\/ICWSM\/ICWSM12\/paper\/view\/4638"}],"container-title":["Advances in Data Analysis and Classification"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-016-0267-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11634-016-0267-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-016-0267-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,9,24]],"date-time":"2020-09-24T23:24:11Z","timestamp":1600989851000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11634-016-0267-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,8,9]]},"references-count":29,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2016,12]]}},"alternative-id":["267"],"URL":"https:\/\/doi.org\/10.1007\/s11634-016-0267-5","relation":{},"ISSN":["1862-5347","1862-5355"],"issn-type":[{"type":"print","value":"1862-5347"},{"type":"electronic","value":"1862-5355"}],"subject":[],"published":{"date-parts":[[2016,8,9]]}}}