{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,22]],"date-time":"2024-06-22T11:57:29Z","timestamp":1719057449757},"reference-count":63,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2015,10,26]],"date-time":"2015-10-26T00:00:00Z","timestamp":1445817600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/100007195","name":"Universit\u00e0 degli Studi di Napoli Federico II","doi-asserted-by":"publisher","award":["Ph.D scholarship"],"id":[{"id":"10.13039\/100007195","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Data Anal Classif"],"published-print":{"date-parts":[[2016,12]]},"DOI":"10.1007\/s11634-015-0219-5","type":"journal-article","created":{"date-parts":[[2015,10,26]],"date-time":"2015-10-26T06:26:41Z","timestamp":1445840801000},"page":"441-464","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Factor probabilistic distance clustering (FPDC): a new clustering method"],"prefix":"10.1007","volume":"10","author":[{"given":"Cristina","family":"Tortora","sequence":"first","affiliation":[]},{"given":"Mireille Gettler","family":"Summa","sequence":"additional","affiliation":[]},{"given":"Marina","family":"Marino","sequence":"additional","affiliation":[]},{"given":"Francesco","family":"Palumbo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,10,26]]},"reference":[{"issue":"1","key":"219_CR1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0169-7439(00)00071-X","volume":"52","author":"CA Andersson","year":"2000","unstructured":"Andersson CA, Bro R (2000) The N-way toolbox for MATLAB. Chemom Intell Lab Syst 52(1):1\u20134","journal-title":"Chemom Intell Lab Syst"},{"issue":"3","key":"219_CR2","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1007\/s11222-010-9175-2","volume":"21","author":"JL Andrews","year":"2011","unstructured":"Andrews JL, McNicholas PD (2011) Extending mixtures of multivariate t-factor analyzers. Stat Comput 21(3):361\u2013373","journal-title":"Stat Comput"},{"key":"219_CR3","first-page":"160","volume-title":"Advanced methods in marketing research","author":"P Arabie","year":"1994","unstructured":"Arabie P, Hubert L (1994) Cluster analysis in marketing research. In: Bagozzi R (ed) Advanced methods in marketing research. Blackwell, Oxford, pp 160\u2013189"},{"issue":"1","key":"219_CR4","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/s00357-008-9002-z","volume":"25","author":"A Ben-Israel","year":"2008","unstructured":"Ben-Israel A, Iyigun C (2008) Probabilistic d-clustering. J Classif 25(1):5\u201326","journal-title":"J Classif"},{"issue":"1","key":"219_CR5","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1007\/BF02339490","volume":"1","author":"J Bezdek","year":"1974","unstructured":"Bezdek J (1974) Numerical taxonomy with fuzzy sets. J Math Biol 1(1):57\u201371","journal-title":"J Math Biol"},{"key":"219_CR6","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1007\/978-94-009-3977-6_2","volume":"8","author":"HH Bock","year":"1987","unstructured":"Bock HH (1987) On the interface between cluster analysis, principal component analysis, and multidimensional scaling. Multivar Stat Model Data Anal 8:17\u201334","journal-title":"Multivar Stat Model Data Anal"},{"issue":"1","key":"219_CR7","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1007\/s11222-011-9249-9","volume":"22","author":"C Bouveyron","year":"2012","unstructured":"Bouveyron C, Brunet C (2012) Simultaneous model-based clustering and visualization in the Fisher discriminative subspace. Stat Comput 22(1):301\u2013324","journal-title":"Stat Comput"},{"key":"219_CR8","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.csda.2012.12.008","volume":"71","author":"C Bouveyron","year":"2014","unstructured":"Bouveyron C, Brunet-Saumard C (2014) Model-based clustering of high-dimensional data: a review. Comput Stat Data Anal 71:52\u201378","journal-title":"Comput Stat Data Anal"},{"key":"219_CR9","doi-asserted-by":"crossref","unstructured":"Campbell JG, Fraley F, Murtagh F, Raftery AE (1997) Linear flaw detection in woven textiles using model-based clustering. Pattern Recogn Lett 18:1539\u20131548","DOI":"10.1016\/S0167-8655(97)00148-7"},{"issue":"1","key":"219_CR10","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1348\/000711005X64817","volume":"59","author":"E Ceulemans","year":"2006","unstructured":"Ceulemans E, Kiers HAL (2006) Selecting among three-mode principal component models of different types and complexities: a numerical convex hull based method. Br J Math Stat Psychol 59(1):133\u2013150","journal-title":"Br J Math Stat Psychol"},{"issue":"1","key":"219_CR11","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s00357-010-9049-5","volume":"27","author":"M Chiang","year":"2010","unstructured":"Chiang M, Mirkin B (2010) Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads. J Classif 27(1):3\u201340","journal-title":"J Classif"},{"key":"219_CR12","unstructured":"Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna"},{"issue":"2","key":"219_CR13","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1207\/s15327906mbr4102_2","volume":"41","author":"S Craen","year":"2006","unstructured":"Craen S, Commandeur J, Frank L, Heiser W (2006) Effects of group size and lack of sphericity on the recovery of clusters in k-means cluster analysis. Multivar Behav Res 41(2):127\u2013145","journal-title":"Multivar Behav Res"},{"issue":"1","key":"219_CR14","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1287\/mksc.11.1.1","volume":"11","author":"WS Sarbo De","year":"1992","unstructured":"De Sarbo WS, Manrai AK (1992) A new multidimensional scaling methodology for the analysis of asymmetric proximity data in marketing research. Mark Sci 11(1):1\u201320","journal-title":"Mark Sci"},{"key":"219_CR15","doi-asserted-by":"crossref","unstructured":"De Soete, G. and J.\u00a0D. Carroll (1994). k-means clustering in a low-dimensional Euclidean space. In: Diday E, Lechevallier Y, Schader M et al (eds) New approaches in classification and data analysis. Springer, Heidelberg, pp 212\u2013219","DOI":"10.1007\/978-3-642-51175-2_24"},{"key":"219_CR16","unstructured":"Franczak BC, McNicholas PD, Browne RB, Murray PM (2013) Parsimonious shifted asymmetric Laplace mixtures. arXiv:1311:0317"},{"key":"219_CR17","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.patrec.2015.02.011","volume":"58","author":"BC Franczak","year":"2015","unstructured":"Franczak BC, Tortora C, Browne RP, McNicholas PD (2015) Unsupervised learning via mixtures of skewed distributions with hypercube contours. Pattern Recognit Lett 58:69\u201376","journal-title":"Pattern Recognit Lett"},{"key":"219_CR18","unstructured":"Ghahramani Z, Hinton GE (1997) The EM algorithm for mixtures of factor analyzers. Crg-tr-96-1, Univ. Toronto, Toronto"},{"key":"219_CR19","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1007\/s11336-004-1173-x","volume":"71","author":"H Hwang","year":"2006","unstructured":"Hwang H, Dillon WR, Takane Y (2006) An extension of multiple correspondence analysis for identifying heterogenous subgroups of respondents. Psychometrika 71:161\u2013171","journal-title":"Psychometrika"},{"issue":"6","key":"219_CR20","doi-asserted-by":"crossref","first-page":"3269","DOI":"10.1016\/j.csda.2007.10.006","volume":"52","author":"A Iodice D\u2019Enza","year":"2008","unstructured":"Iodice D\u2019Enza A, Palumbo F, Greenacre M (2008) Exploratory data analysis leading towards the most interesting simple association rules. Comput Stat Data Anal 52(6):3269\u20133281","journal-title":"Comput Stat Data Anal"},{"key":"219_CR21","unstructured":"Iyigun C (2007) Probabilistic distance clustering. Ph.D. thesis, New Brunswick Rutgers, The State University of New Jersey"},{"issue":"8","key":"219_CR22","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1016\/j.patrec.2009.09.011","volume":"31","author":"AK Jain","year":"2009","unstructured":"Jain AK (2009) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31(8):651\u2013666","journal-title":"Pattern Recognit Lett"},{"issue":"1","key":"219_CR23","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/s11222-008-9072-0","volume":"19","author":"D Karlis","year":"2009","unstructured":"Karlis D, Santourian A (2009) Model-based clustering with non-elliptically contoured distributions. Stat Comput 19(1):73\u201383","journal-title":"Stat Comput"},{"issue":"1","key":"219_CR24","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1348\/000711003321645386","volume":"56","author":"HAL Kiers","year":"2003","unstructured":"Kiers HAL, Der Kinderen A (2003) A fast method for choosing the numbers of components in Tucker3 analysis. Br J MathStat Psychol 56(1):119\u2013125","journal-title":"Br J MathStat Psychol"},{"key":"219_CR25","doi-asserted-by":"crossref","DOI":"10.1002\/9780470238004","volume-title":"Applied multiway data analysis","author":"PM Kroonenberg","year":"2008","unstructured":"Kroonenberg PM (2008) Applied multiway data analysis. Ebooks Corporation, Hoboken"},{"key":"219_CR26","first-page":"117","volume":"8","author":"PM Kroonenberg","year":"1987","unstructured":"Kroonenberg PM, Van der Voort THA (1987) Multiplicatieve decompositie van interacties bij oordelen over de werkelijkheidswaarde van televisiefilms [multiplicative decomposition of interactions for judgments of realism of television films]. Kwantitatieve Methoden 8:117\u2013144","journal-title":"Kwantitatieve Methoden"},{"key":"219_CR27","volume-title":"Multivariate statistical descriptive analysis","author":"A Lebart","year":"1984","unstructured":"Lebart A, Morineau A, Warwick K (1984) Multivariate statistical descriptive analysis. Wiley, New York"},{"issue":"3","key":"219_CR28","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s11634-013-0132-8","volume":"7","author":"SX Lee","year":"2013","unstructured":"Lee SX, McLachlan GJ (2013) On mixtures of skew normal and skew t-distributions. Adv Data Anal Classif 7(3):241\u2013266","journal-title":"Adv Data Anal Classif"},{"key":"219_CR29","unstructured":"Lin T-I, McLachlan GJ, Lee SX (2013) Extending mixtures of factor models using the restricted multivariate skew-normal distribution. arXiv:1307:1748"},{"key":"219_CR30","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.jmva.2008.04.010","volume":"100","author":"T-I Lin","year":"2009","unstructured":"Lin T-I (2009) Maximum likelihood estimation for multivariate skew normal mixture models. J Multivar Anal 100:257\u2013265","journal-title":"J Multivar Anal"},{"issue":"3","key":"219_CR31","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1007\/s11222-009-9128-9","volume":"20","author":"T-I Lin","year":"2010","unstructured":"Lin T-I (2010) Robust mixture modeling using multivariate skew t distributions. Stat Comput 20(3):343\u2013356","journal-title":"Stat Comput"},{"key":"219_CR32","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.spl.2014.01.015","volume":"88","author":"T-I Lin","year":"2014","unstructured":"Lin T-I, McNicholas PD, Hsiu JH (2014) Capturing patterns via parsimonious t mixture models. Stat Probab Lett 88:80\u201387","journal-title":"Stat Probab Lett"},{"key":"219_CR33","unstructured":"Markos A, Iodice D\u2019Enza A, Van de Velden M (2013) clustrd: methods for joint dimension reduction and clustering. R package version 0.1.2"},{"issue":"4","key":"219_CR34","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1198\/004017002188618509","volume":"44","author":"RA Maronna","year":"2002","unstructured":"Maronna RA, Zamar RH (2002) Robust estimates of location and dispersion for high-dimensional datasets. Technometrics 44(4):307\u2013317","journal-title":"Technometrics"},{"key":"219_CR35","doi-asserted-by":"crossref","unstructured":"McLachlan GJ, Peel D (2000b) Mixtures of factor analyzers. In: Morgan\u00a0Kaufman SF (ed) Proccedings of the seventeenth international conference on machine learning, pp 599\u2013606","DOI":"10.1002\/0471721182.ch8"},{"key":"219_CR36","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/S0167-9473(02)00183-4","volume":"41","author":"GJ McLachlan","year":"2003","unstructured":"McLachlan GJ, Peel D, Bean RW (2003) Modelling high-dimensional data by mixtures of factor analyzers. Comput Stat Data Anal 41:379\u2013388","journal-title":"Comput Stat Data Anal"},{"key":"219_CR37","doi-asserted-by":"crossref","DOI":"10.1002\/0471721182","volume-title":"Finite mixture models","author":"GJ McLachlan","year":"2000","unstructured":"McLachlan GJ, Peel D (2000a) Finite mixture models. Wiley Interscience, New York"},{"key":"219_CR38","unstructured":"McNicholas PD, Jampani KR, McDaid AF, Murphy TB, Banks L (2011) pgmm: Parsimonious Gaussian Mixture Models. R package version 1:1"},{"key":"219_CR39","unstructured":"McNicholas SM, McNicholas PD, Browne RP (2013) Mixtures of variance-gamma distributions. arXiv:1309.2695"},{"issue":"3","key":"219_CR40","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1007\/s11222-008-9056-0","volume":"18","author":"PD McNicholas","year":"2008","unstructured":"McNicholas PD, Murphy T (2008) Parsimonious Gaussian mixture models. Stat Comput 18(3):285\u2013296","journal-title":"Stat Comput"},{"key":"219_CR41","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/j.csda.2014.03.012","volume":"77","author":"PM Murray","year":"2014","unstructured":"Murray PM, Browne RB, McNicholas PD (2014) Mixtures of skew-t factor analyzers. Comput Stat Data Anal 77:326\u2013335","journal-title":"Comput Stat Data Anal"},{"key":"219_CR42","doi-asserted-by":"crossref","unstructured":"Palumbo F, Vistocco D, Morineau A (2008) Huge multidimensional data visualization: back to the virtue of principal coordinates and dendrograms in the new computer age. In: Chun-houh Chen WH, Unwin A (eds) Handbook of data visualization. Springer, pp 349\u2013387","DOI":"10.1007\/978-3-540-33037-0_15"},{"key":"219_CR43","doi-asserted-by":"crossref","unstructured":"Rachev ST, Klebanov LB, Stoyanov SV, Fabozzi FJ (2013) The methods of distances in the theory of probability and statistics. Springer","DOI":"10.1007\/978-1-4614-4869-3"},{"issue":"2","key":"219_CR44","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1007\/s00357-011-9085-9","volume":"28","author":"R Rocci","year":"2011","unstructured":"Rocci R, Gattone SA, Vichi M (2011) A new dimension reduction method: factor discriminant k-means. J Classif 28(2):210\u2013226","journal-title":"J Classif"},{"issue":"4","key":"219_CR45","doi-asserted-by":"crossref","first-page":"510","DOI":"10.1080\/03610918.2011.595984","volume":"41","author":"MA Steane","year":"2012","unstructured":"Steane MA, McNicholas PD, Yada R (2012) Model-based classification via mixtures of multivariate t-factor analyzers. Commun Stat Simul Comput 41(4):510\u2013523","journal-title":"Commun Stat Simul Comput"},{"key":"219_CR46","unstructured":"Stute W, Zhu LX (1995) Asymptotics of k-means clustering based on projection pursuit. Sankhy\u0101 57(3):462\u2013471"},{"issue":"2","key":"219_CR47","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1007\/s11634-014-0165-7","volume":"8","author":"S Subedi","year":"2014","unstructured":"Subedi S, McNicholas PD (2014) Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions. Adv Data Anal Classif 8(2):167\u2013193","journal-title":"Adv Data Anal Classif"},{"key":"219_CR48","unstructured":"The MathWorks Inc. (2007) MATLAB\u2014The Language of Technical Computing, Version 7.5. The MathWorks Inc., Natick"},{"key":"219_CR49","doi-asserted-by":"crossref","unstructured":"Timmerman ME, Ceulemans E, Roover K, Leeuwen K (2013) Subspace k-means clustering. Behav Res Methods Res 45(4):1011\u20131023","DOI":"10.3758\/s13428-013-0329-y"},{"issue":"7","key":"219_CR50","doi-asserted-by":"crossref","first-page":"1858","DOI":"10.1016\/j.csda.2010.02.009","volume":"54","author":"ME Timmerman","year":"2010","unstructured":"Timmerman ME, Ceulemans E, Kiers HAL, Vichi M (2010) Factorial and reduced k-means reconsidered. Comput Stat Data Anal 54(7):1858\u20131871","journal-title":"Comput Stat Data Anal"},{"issue":"1","key":"219_CR51","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1348\/000711000159132","volume":"53","author":"ME Timmerman","year":"2000","unstructured":"Timmerman ME, Kiers HAL (2000) Three-mode principal components analysis: choosing the numbers of components and sensitivity to local optima. Br J Math Stat Psychol 53(1):1\u201316","journal-title":"Br J Math Stat Psychol"},{"key":"219_CR52","unstructured":"Tortora, C. and M. Marino (2014). Robustness and stability analysis of factor PD-clustering on large social datasets. In D. Vicari, A. Okada, G. Ragozini, and C. Weihs (Eds.), Analysis and Modeling of Complex Data in Behavioral and Social Sciences, pp. 273\u2013281. Springer"},{"key":"219_CR53","doi-asserted-by":"crossref","unstructured":"Tortora C, Gettler Summa M, Palumbo F (2013) Factor PD-clustering. In: Berthold UL, Dirk V (ed) Algorithms from and for nature and life, pp 115\u2013123","DOI":"10.1007\/978-3-319-00035-0_11"},{"key":"219_CR54","doi-asserted-by":"crossref","unstructured":"Tortora C, McNicholas PD, Browne RP (2015) A mixture of generalized hyperbolic factor analyzers. Adv Data Anal Classif (in press)","DOI":"10.1007\/s11634-015-0204-z"},{"key":"219_CR55","unstructured":"Tortora C, McNicholas PD (2014) FPDclustering: PD-clustering and factor PD-clustering. R package version 1.0"},{"key":"219_CR56","unstructured":"Tortora C, Palumbo F (2014) FPDC. MATLAB and Statistics Toolbox Release (2012a) The MathWorks Inc. Natick"},{"issue":"3","key":"219_CR57","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1007\/BF02289464","volume":"31","author":"LR Tucker","year":"1966","unstructured":"Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31(3):279\u2013311","journal-title":"Psychometrika"},{"issue":"1","key":"219_CR58","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1037\/a0020144","volume":"16","author":"JK Vermunt","year":"2011","unstructured":"Vermunt JK (2011) K-means may perform as well as mixture model clustering but may also be much worse: comment on Steinley and Brusco (2011). Psychol Methods 16(1):82\u201388","journal-title":"Psychol Methods"},{"key":"219_CR59","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/S0167-9473(00)00064-5","volume":"37","author":"M Vichi","year":"2001","unstructured":"Vichi M, Kiers HAL (2001) Factorial k-means analysis for two way data. Comput Stat Data Anal 37:29\u201364","journal-title":"Comput Stat Data Anal"},{"issue":"8","key":"219_CR60","doi-asserted-by":"crossref","first-page":"3194","DOI":"10.1016\/j.csda.2008.05.028","volume":"53","author":"M Vichi","year":"2009","unstructured":"Vichi M, Saporta G (2009) Clustering and disjoint principal component analysis. Comput Stat Data Anal 53(8):3194\u20133208","journal-title":"Comput Stat Data Anal"},{"key":"219_CR61","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.csda.2013.07.008","volume":"71","author":"I Vrbik","year":"2014","unstructured":"Vrbik I, McNicholas PD (2014) Parsimonious skew mixture models for model-based clustering and classification. Comput Stat Data Anal 71:196\u2013210","journal-title":"Comput Stat Data Anal"},{"key":"219_CR62","doi-asserted-by":"crossref","first-page":"115","DOI":"10.2333\/bhmk.41.115","volume":"41","author":"M Yamamoto","year":"2014","unstructured":"Yamamoto M, Hwang H (2014) A general formulation of cluster analysis with dimension reduction and subspace separation. Behaviormetrika 41:115\u2013129","journal-title":"Behaviormetrika"},{"issue":"3","key":"219_CR63","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1016\/S0019-9958(65)90241-X","volume":"8","author":"LA Zadeh","year":"1965","unstructured":"Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338\u2013353","journal-title":"Inf Control"}],"container-title":["Advances in Data Analysis and Classification"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-015-0219-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11634-015-0219-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-015-0219-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-015-0219-5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T18:46:36Z","timestamp":1559414796000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11634-015-0219-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,10,26]]},"references-count":63,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2016,12]]}},"alternative-id":["219"],"URL":"https:\/\/doi.org\/10.1007\/s11634-015-0219-5","relation":{},"ISSN":["1862-5347","1862-5355"],"issn-type":[{"value":"1862-5347","type":"print"},{"value":"1862-5355","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,10,26]]}}}