{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,8]],"date-time":"2024-06-08T13:10:07Z","timestamp":1717852207295},"reference-count":43,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2015,4,17]],"date-time":"2015-04-17T00:00:00Z","timestamp":1429228800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Data Anal Classif"],"published-print":{"date-parts":[[2016,9]]},"DOI":"10.1007\/s11634-015-0206-x","type":"journal-article","created":{"date-parts":[[2015,4,16]],"date-time":"2015-04-16T03:12:28Z","timestamp":1429153948000},"page":"375-390","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":19,"title":["Quantile regression with group lasso for classification"],"prefix":"10.1007","volume":"10","author":[{"given":"Hussein","family":"Hashem","sequence":"first","affiliation":[]},{"given":"Veronica","family":"Vinciotti","sequence":"additional","affiliation":[]},{"given":"Rahim","family":"Alhamzawi","sequence":"additional","affiliation":[]},{"given":"Keming","family":"Yu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,4,17]]},"reference":[{"key":"206_CR1","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.csda.2012.01.014","volume":"64","author":"R Alhamzawi","year":"2013","unstructured":"Alhamzawi R, Yu K (2013) Conjugate priors and variable selection for Bayesian quantile regression. Comput Stat Data Anal 64:209\u2013219","journal-title":"Comput Stat Data Anal"},{"issue":"3","key":"206_CR2","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1177\/1471082X1101200304","volume":"12","author":"R Alhamzawi","year":"2012","unstructured":"Alhamzawi R, Yu K, Benoit D (2012) Bayesian adaptive lasso quantile regression. Stat Model 12(3):279\u2013297","journal-title":"Stat Model"},{"key":"206_CR3","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1111\/j.2517-6161.1974.tb00989.x","volume":"36","author":"DF Andrews","year":"1974","unstructured":"Andrews DF, Mallows CL (1974) Scale mixtures of normal distributions. J R Stat Soc Ser B 36:99\u2013102","journal-title":"J R Stat Soc Ser B"},{"key":"206_CR4","first-page":"1179","volume":"9","author":"F Bach","year":"2008","unstructured":"Bach F (2008) Consistency of the group lasso and multiple kernel learning. J Mach Learn Res 9:1179\u20131225","journal-title":"J Mach Learn Res"},{"issue":"18","key":"206_CR5","doi-asserted-by":"crossref","first-page":"3423","DOI":"10.1093\/bioinformatics\/bth419","volume":"20","author":"K Bae","year":"2004","unstructured":"Bae K, Mallick B (2004) Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 20(18):3423\u20133430","journal-title":"Bioinformatics"},{"key":"206_CR6","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1214\/10-AOS827","volume":"39","author":"A Belloni","year":"2011","unstructured":"Belloni A, Chernozhukov V (2011) Post l $$_1$$ 1 -penalized quantile regression in high-dimensional sparse models. Ann Stat 39:82\u2013130","journal-title":"Ann Stat"},{"issue":"7","key":"206_CR7","doi-asserted-by":"crossref","first-page":"1174","DOI":"10.1002\/jae.1216","volume":"27","author":"D Benoit","year":"2012","unstructured":"Benoit D, Poel D (2012) Binary quantile regression: a Bayesian approach based on the asymmetric laplace density. J Appl Econ 27(7):1174\u20131188","journal-title":"J Appl Econ"},{"key":"206_CR8","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1007\/s11222-013-9424-2","volume":"25","author":"P Breheny","year":"2015","unstructured":"Breheny P, Huang J (2015) Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors. Stat Comput 25:173\u2013187","journal-title":"Stat Comput"},{"key":"206_CR9","doi-asserted-by":"crossref","unstructured":"Davino C, Furno M, Vistocco D (2013) Quantile regression: theory and applications. Wiley, Chichester","DOI":"10.1002\/9781118752685"},{"issue":"1","key":"206_CR10","first-page":"1","volume":"31","author":"J Friedman","year":"2010","unstructured":"Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 31(1):1\u201322","journal-title":"J Stat Softw"},{"issue":"14","key":"206_CR11","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1198\/004017007000000245","volume":"49","author":"A Genkin","year":"2007","unstructured":"Genkin A, Lewis DD, Madigan D (2007) Large-scale Bayesian logistic regression for text categorization. Technometrics 49(14):291\u2013304","journal-title":"Technometrics"},{"issue":"1","key":"206_CR12","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1093\/biostatistics\/kxj039","volume":"8","author":"M Geraci","year":"2007","unstructured":"Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8(1):140\u2013154","journal-title":"Biostatistics"},{"issue":"3","key":"206_CR13","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1214\/12-BA719","volume":"7","author":"R Gramacy","year":"2012","unstructured":"Gramacy R, Polson N (2012) Simulation-based regularized logistic regression. Bayesian Anal 7(3):503\u2013770","journal-title":"Bayesian Anal"},{"issue":"2","key":"206_CR14","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1198\/0003130031423","volume":"57","author":"D Hand","year":"2003","unstructured":"Hand D, Vinciotti V (2003) Local versus global models for classification problems: fitting models where it matters. Am Stat 57(2):124\u2013131","journal-title":"Am Stat"},{"issue":"4","key":"206_CR15","doi-asserted-by":"crossref","first-page":"1978","DOI":"10.1214\/09-AOS778","volume":"38","author":"J Huang","year":"2010","unstructured":"Huang J, Zhang T (2010) The benefit of group sparsity. Ann Stat 38(4):1978\u20132004","journal-title":"Ann Stat"},{"issue":"4","key":"206_CR16","doi-asserted-by":"crossref","first-page":"827","DOI":"10.1016\/j.csda.2011.10.003","volume":"56","author":"Y Ji","year":"2012","unstructured":"Ji Y, Lin N, Zhang B (2012) Model selection in binary and tobit quantile regression using the Gibbs sampler. Comput Stat Data Anal 56(4):827\u2013839","journal-title":"Comput Stat Data Anal"},{"key":"206_CR17","doi-asserted-by":"crossref","unstructured":"Koenker R (2005) Quantile regression. CRC Press, Boca Raton","DOI":"10.1017\/CBO9780511754098"},{"key":"206_CR18","doi-asserted-by":"crossref","first-page":"33","DOI":"10.2307\/1913643","volume":"46","author":"R Koenker","year":"1978","unstructured":"Koenker R, Bassett GW (1978) Regression quantiles. Econometrica 46:33\u201350","journal-title":"Econometrica"},{"key":"206_CR19","doi-asserted-by":"crossref","unstructured":"Kordas G (2002) Credit scoring using binary quantile regression. In: Statistical data analysis based on the L1-norm and related methods. Statistics for industry and technology. Birkh\u00e4user, Basel, pp 125\u2013137","DOI":"10.1007\/978-3-0348-8201-9_10"},{"issue":"3","key":"206_CR20","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1002\/jae.843","volume":"21","author":"G Kordas","year":"2006","unstructured":"Kordas G (2006) Smoothed binary regression quantiles. J Appl Econ 21(3):387\u2013407","journal-title":"J Appl Econ"},{"key":"206_CR21","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1080\/00949655.2010.496117","volume":"81","author":"H Kozumi","year":"2011","unstructured":"Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81:1565\u20131578","journal-title":"J Stat Comput Simul"},{"key":"206_CR22","doi-asserted-by":"crossref","first-page":"957","DOI":"10.1109\/TPAMI.2005.127","volume":"27","author":"B Krishnapuram","year":"2005","unstructured":"Krishnapuram B, Carin L, Figueiredo MA, Hartemink AJ (2005) Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans Pattern Anal Mach Intell 27:957\u2013968","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"206_CR23","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1198\/106186008X289155","volume":"17","author":"Y Li","year":"2008","unstructured":"Li Y, Zhu J (2008) L1-norm quantile regressions. J Comput Graph Stat 17:163\u2013185","journal-title":"J Comput Graph Stat"},{"key":"206_CR24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1214\/10-BA501","volume":"5","author":"Q Li","year":"2010","unstructured":"Li Q, Xi R, Lin N (2010) Bayesian regularized quantile regression. Bayesian Anal 5:1\u201324","journal-title":"Bayesian Anal"},{"key":"206_CR25","unstructured":"Lichman M (2013) UCI machine learning repository. http:\/\/archive.ics.uci.edu\/ml"},{"key":"206_CR26","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.csda.2012.10.019","volume":"60","author":"X Liu","year":"2013","unstructured":"Liu X, Wang Z, Wu Y (2013) Group variable selection and estimation in the tobit censored response model. Comput Stat Data Anal 60:80\u201389","journal-title":"Comput Stat Data Anal"},{"key":"206_CR27","doi-asserted-by":"crossref","first-page":"2164","DOI":"10.1214\/11-AOS896","volume":"39","author":"K Lounici","year":"2011","unstructured":"Lounici K, Pontil M, Tsybakov A, van de Geer S (2011) Oracle inequalities and optimal inference under group sparsity. Ann Stat 39:2164\u20132204","journal-title":"Ann Stat"},{"issue":"2","key":"206_CR28","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1214\/12-BA708","volume":"7","author":"K Lum","year":"2012","unstructured":"Lum K, Gelfand A (2012) Spatial quantile multiple regression using the asymmetric laplace process. Bayesian Anal 7(2):235\u2013258","journal-title":"Bayesian Anal"},{"issue":"3","key":"206_CR29","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/0304-4076(75)90032-9","volume":"3","author":"C Manski","year":"1975","unstructured":"Manski C (1975) Maximum score estimation of the stochastic utility model of choice. J Econ 3(3):205\u2013228","journal-title":"J Econ"},{"issue":"3","key":"206_CR30","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/0304-4076(85)90009-0","volume":"27","author":"C Manski","year":"1985","unstructured":"Manski C (1985) Semiparametric analysis of discrete response: asymptotic properties of the maximum score estimator. J Econ 27(3):313\u2013333","journal-title":"J Econ"},{"issue":"1","key":"206_CR31","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1111\/j.1467-9868.2007.00627.x","volume":"70","author":"L Meier","year":"2008","unstructured":"Meier L, van de Geer S, B\u00fchlmann P (2008) The group lasso for logistic regression. J R Stat Soc Ser B 70(1):53\u201371","journal-title":"J R Stat Soc Ser B"},{"issue":"9","key":"206_CR32","doi-asserted-by":"crossref","first-page":"1374","DOI":"10.1057\/jors.2012.116","volume":"64","author":"LV Migu\u00e9is","year":"2013","unstructured":"Migu\u00e9is LV, Benoit DF, Van den Poel D (2013) Enhanced decision support in credit scoring using Bayesian binary quantile regression. J Oper Res Soc 64(9):1374\u20131383","journal-title":"J Oper Res Soc"},{"key":"206_CR33","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/0304-4076(84)90004-6","volume":"25","author":"J Powell","year":"1984","unstructured":"Powell J (1984) Least absolute deviations estimation for the censored regression model. J Econ 25:303\u2013325","journal-title":"J Econ"},{"issue":"2","key":"206_CR34","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1080\/15533174.2012.707849","volume":"22","author":"D Sharma","year":"2013","unstructured":"Sharma D, Bondell H, Zhang H (2013) Consistent group identification and variable selection in regression with correlated predictors. J Comput Graph Stat 22(2):319\u2013340","journal-title":"J Comput Graph Stat"},{"issue":"2","key":"206_CR35","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1080\/10618600.2012.681250","volume":"22","author":"N Simon","year":"2013","unstructured":"Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Graph Stat 22(2):231\u2013245","journal-title":"J Comput Graph Stat"},{"key":"206_CR36","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","volume":"58","author":"R Tibshirani","year":"1996","unstructured":"Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58:267\u2013288","journal-title":"J R Stat Soc Ser B"},{"key":"206_CR37","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1002\/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3","volume":"16","author":"R Tibshirani","year":"1997","unstructured":"Tibshirani R (1997) The lasso method for variable selection in the cox model. Stat Med 16:385\u2013395","journal-title":"Stat Med"},{"key":"206_CR38","first-page":"1369","volume":"16","author":"F Wei","year":"2010","unstructured":"Wei F, Huang J (2010) Consistent group selection in high-dimensional linear regression. Stat Med 16:1369\u20131384","journal-title":"Stat Med"},{"key":"206_CR39","doi-asserted-by":"crossref","unstructured":"Yang Y, Zou H (2015) A fast unified algorithm for solving group-lasso penalized learning problems. Stat Comput (to appear)","DOI":"10.1007\/s11222-014-9498-5"},{"key":"206_CR40","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1016\/S0167-7152(01)00124-9","volume":"54","author":"K Yu","year":"2001","unstructured":"Yu K, Moyeed R (2001) Bayesian quantile regression. Stat Probab Lett 54:437\u2013447","journal-title":"Stat Probab Lett"},{"key":"206_CR41","doi-asserted-by":"crossref","first-page":"261","DOI":"10.4310\/SII.2013.v6.n2.a9","volume":"6","author":"K Yu","year":"2013","unstructured":"Yu K, Cathy C, Reed C, Dunson D (2013) Bayesian variable selection in quantile regression. Stat Interface 6:261\u2013274","journal-title":"Stat Interface"},{"key":"206_CR42","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1111\/j.1467-9868.2005.00532.x","volume":"68","author":"M Yuan","year":"2006","unstructured":"Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 68:49\u201367","journal-title":"J R Stat Soc Ser B"},{"key":"206_CR43","doi-asserted-by":"crossref","first-page":"1418","DOI":"10.1198\/016214506000000735","volume":"101","author":"H Zou","year":"2006","unstructured":"Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101:1418\u20131429","journal-title":"J Am Stat Assoc"}],"container-title":["Advances in Data Analysis and Classification"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-015-0206-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11634-015-0206-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-015-0206-x","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,8]],"date-time":"2024-06-08T12:19:46Z","timestamp":1717849186000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11634-015-0206-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,4,17]]},"references-count":43,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2016,9]]}},"alternative-id":["206"],"URL":"https:\/\/doi.org\/10.1007\/s11634-015-0206-x","relation":{},"ISSN":["1862-5347","1862-5355"],"issn-type":[{"value":"1862-5347","type":"print"},{"value":"1862-5355","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,4,17]]}}}