{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T11:09:09Z","timestamp":1720782549172},"reference-count":74,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2015,4,7]],"date-time":"2015-04-07T00:00:00Z","timestamp":1428364800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Data Anal Classif"],"published-print":{"date-parts":[[2016,12]]},"DOI":"10.1007\/s11634-015-0204-z","type":"journal-article","created":{"date-parts":[[2015,4,6]],"date-time":"2015-04-06T13:22:59Z","timestamp":1428326579000},"page":"423-440","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":34,"title":["A mixture of generalized hyperbolic factor analyzers"],"prefix":"10.1007","volume":"10","author":[{"given":"Cristina","family":"Tortora","sequence":"first","affiliation":[]},{"given":"Paul D.","family":"McNicholas","sequence":"additional","affiliation":[]},{"given":"Ryan P.","family":"Browne","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,4,7]]},"reference":[{"key":"204_CR1","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1017\/S0370164600022070","volume":"46","author":"A Aitken","year":"1926","unstructured":"Aitken A (1926) On Bernoulli\u2019s numerical solution of algebraic equations. Proc R Soc Edim 46:289\u2013305","journal-title":"Proc R Soc Edim"},{"issue":"3","key":"204_CR2","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1007\/s11222-010-9175-2","volume":"21","author":"JL Andrews","year":"2011","unstructured":"Andrews JL, McNicholas PD (2011a) Extending mixtures of multivariate t-factor analyzers. Stat Comput 21(3):361\u2013373","journal-title":"Stat Comput"},{"issue":"4","key":"204_CR3","doi-asserted-by":"crossref","first-page":"1479","DOI":"10.1016\/j.jspi.2010.10.014","volume":"141","author":"JL Andrews","year":"2011","unstructured":"Andrews JL, McNicholas PD (2011b) Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis. J Stat Plan Inference 141(4):1479\u20131486","journal-title":"J Stat Plan Inference"},{"issue":"5","key":"204_CR4","doi-asserted-by":"crossref","first-page":"1021","DOI":"10.1007\/s11222-011-9272-x","volume":"22","author":"JL Andrews","year":"2012","unstructured":"Andrews JL, McNicholas P (2012) Model-based clustering, classification, and discriminant analysis via mixtures of multivariate $$t$$ t -distributions. Stat Comput 22(5):1021\u20131029","journal-title":"Stat Comput"},{"issue":"7","key":"204_CR5","doi-asserted-by":"crossref","first-page":"1298","DOI":"10.1109\/TPAMI.2009.149","volume":"32","author":"J Baek","year":"2010","unstructured":"Baek J, McLachlan GJM, Flack L (2010) Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data. IEEE Trans Pattern Anal Mach Intell 32(7):1298\u20131309","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"204_CR6","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1007\/BF00533162","volume":"38","author":"O Barndorff-Nielsen","year":"1977","unstructured":"Barndorff-Nielsen O, Halgreen C (1977) Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions. Z. Wahrscheinlichkeitstheor Verw. Geb 38:309\u2013311","journal-title":"Z. Wahrscheinlichkeitstheor Verw. Geb"},{"issue":"2","key":"204_CR7","first-page":"2","volume":"1","author":"L Berg\u00e9","year":"2013","unstructured":"Berg\u00e9 L, Bouveyron C, Girard S (2013) Hdclassif: high dimensional supervised classification and clustering. R Package Version 1(2):2","journal-title":"R Package Version"},{"issue":"1","key":"204_CR8","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1007\/s11634-013-0155-1","volume":"8","author":"S Bhattacharya","year":"2014","unstructured":"Bhattacharya S, McNicholas PD (2014) A LASSO-penalized BIC for mixture model selection. Adv Data Anal Classif 8(1):45\u201361","journal-title":"Adv Data Anal Classif"},{"key":"204_CR9","unstructured":"Bl\u00e6sild P (1978) The shape of the generalized inverse Gaussian and hyperbolic distributions. In: Research Report 37, Department of Theoretical Statistics. Aarhus University, Denmark"},{"key":"204_CR10","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1007\/BF01720593","volume":"46","author":"D B\u00f6hning","year":"1994","unstructured":"B\u00f6hning D, Diez E, Scheub R, Schlattmann P, Lindsay B (1994) The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Ann Inst Stat Math 46:373\u2013388","journal-title":"Ann Inst Stat Math"},{"issue":"1","key":"204_CR11","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1016\/j.csda.2007.02.009","volume":"52","author":"C Bouveyron","year":"2007","unstructured":"Bouveyron C, Girard S, Schmid C (2007) High-dimensional data clustering. Comput Stat Data Anal 52(1):502\u2013519","journal-title":"Comput Stat Data Anal"},{"key":"204_CR12","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.csda.2012.12.008","volume":"71","author":"C Bouveyron","year":"2014","unstructured":"Bouveyron C, Brunet-Saumard C (2014) Model-based clustering of high-dimensional data: a review. Comput Stat Data Anal 71:52\u201378","journal-title":"Comput Stat Data Anal"},{"key":"204_CR13","doi-asserted-by":"publisher","unstructured":"Browne RP, McNicholas PD (2015) A mixture of generalized hyperbolic distributions. Can J Stat. doi: 10.1002\/cjs.11246","DOI":"10.1002\/cjs.11246"},{"issue":"4","key":"204_CR14","doi-asserted-by":"crossref","first-page":"814","DOI":"10.1109\/TPAMI.2011.199","volume":"34","author":"RP Browne","year":"2012","unstructured":"Browne RP, McNicholas PD, Sparling MD (2012) Model-based learning using a mixture of mixtures of Gaussian and uniform distributions. IEEE Trans Pattern Anal Mach Intell 34(4):814\u2013817","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"2","key":"204_CR15","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1007\/s11634-013-0139-1","volume":"8","author":"RP Browne","year":"2014","unstructured":"Browne RP, McNicholas PD (2014) Estimating common principal components in high dimensions. Adv Data Anal Classif 8(2):217\u2013226","journal-title":"Adv Data Anal Classif"},{"key":"204_CR16","doi-asserted-by":"crossref","first-page":"1539","DOI":"10.1016\/S0167-8655(97)00148-7","volume":"18","author":"JG Campbell","year":"1997","unstructured":"Campbell JG, Fraley F, Murtagh F, Raftery AE (1997) Linear flaw detection in woven textiles using model-based clustering. Pattern Recogn Lett 18:1539\u20131548","journal-title":"Pattern Recogn Lett"},{"issue":"6","key":"204_CR17","doi-asserted-by":"crossref","first-page":"1929","DOI":"10.1091\/mbc.02-02-0023","volume":"13","author":"X Chen","year":"2002","unstructured":"Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai K-M, Ji J, Dudoit S, Ng IO, van de Rijn M, Botstein D, Brown PO (2002) Gene expression patterns in human liver cancers. Mol Biol Cell 13(6):1929\u20131939","journal-title":"Mol Biol Cell"},{"key":"204_CR18","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1080\/01621459.1998.10474110","volume":"93","author":"A Dasgupta","year":"1998","unstructured":"Dasgupta A, Raftery AE (1998) Detecting features in spatial point processed with clutter via model-based clustering. J Am Stat Assoc 93:294\u2013302","journal-title":"J Am Stat Assoc"},{"issue":"1","key":"204_CR19","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","volume":"39","author":"AP Dempster","year":"1977","unstructured":"Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):1\u201338","journal-title":"J R Stat Soc Ser B"},{"key":"204_CR20","first-page":"127","volume":"72","author":"M Forina","year":"1982","unstructured":"Forina M, Armanino C (1982) Eigenvector projection and simplified non linear mapping of fatty acid content of Italian olive oils. Ann Chim 72:127\u2013141","journal-title":"Ann Chim"},{"key":"204_CR21","first-page":"143","volume":"72","author":"M Forina","year":"1982","unstructured":"Forina M, Tiscornia E (1982) Pattern recognition methods in the prediction of Italian olive oil origin by their fatty acid content. Ann Chim 72:143\u2013155","journal-title":"Ann Chim"},{"key":"204_CR22","first-page":"189","volume":"25","author":"M Forina","year":"1986","unstructured":"Forina M, Armanino C, Castino M, Ubigli M (1986) Multivariate data analysis as a discriminating method of the origin of wines. Vitis 25:189\u2013201","journal-title":"Vitis"},{"key":"204_CR23","unstructured":"Franczak BC, McNicholas PD, Browne RP, Murray PM (2013) Parsimonious shifted asymmetric Laplace mixtures. ArXiv preprint arXiv:1311.0317"},{"issue":"6","key":"204_CR24","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.1109\/TPAMI.2013.216","volume":"36","author":"BC Franczak","year":"2014","unstructured":"Franczak BC, Browne RP, McNicholas PD (2014) Mixtures of shifted asymmetric Laplace distributions. IEEE Trans Pattern Anal Mach Intell 36(6):1149\u20131157","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"204_CR25","unstructured":"Ghahramani Z, Hinton GE (1997) The EM algorithm for factor analyzers. In: Technical Report CRG-TR-96-1. University of Toronto, Toronto"},{"key":"204_CR26","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1093\/biomet\/40.3-4.237","volume":"40","author":"IJ Good","year":"1953","unstructured":"Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237\u2013260","journal-title":"Biometrika"},{"issue":"1","key":"204_CR27","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/0893-6080(88)90023-8","volume":"1","author":"RP Gorman","year":"1988","unstructured":"Gorman RP, Sejnowski TJ (1988) Analysis of hidden units in a layered network trained to classify sonar targets. Neural Netw 1(1):75\u201389","journal-title":"Neural Netw"},{"key":"204_CR28","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1007\/BF00533246","volume":"47","author":"C Halgreen","year":"1979","unstructured":"Halgreen C (1979) Self-decomposibility of the generalized inverse Gaussian and hyperbolic distributions. Z. Wahrscheinlichkeitstheor Verw. Geb 47:13\u201318","journal-title":"Z. Wahrscheinlichkeitstheor Verw. Geb"},{"key":"204_CR29","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s11634-010-0058-3","volume":"4","author":"C Hennig","year":"2010","unstructured":"Hennig C (2010) Methods for merging Gaussian mixture components. Adv Data Anal Classif 4:3\u201334","journal-title":"Adv Data Anal Classif"},{"issue":"1","key":"204_CR30","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF01908075","volume":"2","author":"L Hubert","year":"1985","unstructured":"Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193\u2013218","journal-title":"J Classif"},{"key":"204_CR31","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4612-5698-4","volume-title":"Statistical properties of the generalized inverse Gaussian distribution","author":"B J\u00f8rgensen","year":"1982","unstructured":"J\u00f8rgensen B (1982) Statistical properties of the generalized inverse Gaussian distribution. Springer, New York"},{"issue":"1","key":"204_CR32","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/s11222-008-9072-0","volume":"19","author":"D Karlis","year":"2009","unstructured":"Karlis D, Santourian A (2009) Model-based clustering with non-elliptically contoured distributions. Stat Comput 19(1):73\u201383","journal-title":"Stat Comput"},{"issue":"3","key":"204_CR33","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s11634-013-0132-8","volume":"7","author":"SX Lee","year":"2013","unstructured":"Lee SX, McLachlan GJ (2013b) On mixtures of skew normal and skew t-distributions. Adv Data Anal Classif 7(3):241\u2013266","journal-title":"Adv Data Anal Classif"},{"key":"204_CR34","unstructured":"Lee S, McLachlan G (2013a). EMMIXuskew: fitting unrestricted multivariate skew t mixture models. R package version 0.11-5"},{"key":"204_CR35","unstructured":"Lin T-I, McLachlan GJ, Lee SX (2013) Extending mixtures of factor models using the restricted multivariate skew-normal distribution. ArXiv preprint arXiv:1307.1748"},{"key":"204_CR36","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.jmva.2008.04.010","volume":"100","author":"T-I Lin","year":"2009","unstructured":"Lin T-I (2009) Maximum likelihood estimation for multivariate skew normal mixture models. J Multivar Anal 100:257\u2013265","journal-title":"J Multivar Anal"},{"issue":"3","key":"204_CR37","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1007\/s11222-009-9128-9","volume":"20","author":"T-I Lin","year":"2010","unstructured":"Lin T-I (2010) Robust mixture modeling using multivariate skew t distributions. Stat Comput 20(3):343\u2013356","journal-title":"Stat Comput"},{"key":"204_CR38","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.spl.2014.01.015","volume":"88","author":"T-I Lin","year":"2014","unstructured":"Lin T-I, McNicholas PD, Hsiu JH (2014) Capturing patterns via parsimonious t mixture models. Stat Probab Lett 88:80\u201387","journal-title":"Stat Probab Lett"},{"key":"204_CR39","doi-asserted-by":"crossref","unstructured":"Lindsay B (1995). Mixture models: theory, geometry and applications. In: NSF-CBMS regional conference series in probability and statistics, vol 5. Institute of Mathematical Statistics, Hayward, California","DOI":"10.1214\/cbms\/1462106013"},{"key":"204_CR40","first-page":"41","volume":"14","author":"HF Lopes","year":"2004","unstructured":"Lopes HF, West M (2004) Bayesian model assessment in factor analysis. Stat Sin 14:41\u201367","journal-title":"Stat Sin"},{"key":"204_CR41","unstructured":"Markos A, Iodice D\u2019Enza A, Van de Velden M (2013) clustrd: methods for joint dimension reduction and clustering. R package version 0.1.2"},{"issue":"11","key":"204_CR42","doi-asserted-by":"crossref","first-page":"3872","DOI":"10.1016\/j.csda.2009.04.013","volume":"53","author":"C Maugis","year":"2009","unstructured":"Maugis C, Celeux G, Martin-Magniette M (2009) Variable selection in model-based clustering: a general variable role modeling. Comput Stat Data Anal 53(11):3872\u20133882","journal-title":"Comput Stat Data Anal"},{"key":"204_CR43","doi-asserted-by":"crossref","unstructured":"McLachlan GJ, Peel D (2000) Mixtures of factor analyzers. In: Proceedings of the seventh international conference on machine learning. San Francisco, Morgan Kaufmann, pp 599\u2013606","DOI":"10.1002\/0471721182.ch8"},{"key":"204_CR44","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/S0167-9473(02)00183-4","volume":"41","author":"GJ McLachlan","year":"2003","unstructured":"McLachlan GJ, Peel D, Bean RW (2003) Modelling high-dimensional data by mixtures of factor analyzers. Comput Stat Data Anal 41:379\u2013388","journal-title":"Comput Stat Data Anal"},{"issue":"11","key":"204_CR45","doi-asserted-by":"crossref","first-page":"5327","DOI":"10.1016\/j.csda.2006.09.015","volume":"51","author":"GJ McLachlan","year":"2007","unstructured":"McLachlan GJ, Bean RW, Jones LB-T (2007) Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution. Comput Stat Data Anal 51(11):5327\u20135338","journal-title":"Comput Stat Data Anal"},{"key":"204_CR46","unstructured":"McNicholas SM, McNicholas PD, Browne RP (2013) Mixtures of variance-gamma distributions. Arxiv preprint arXiv:1309.2695"},{"issue":"3","key":"204_CR47","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1007\/s11222-008-9056-0","volume":"18","author":"PD McNicholas","year":"2008","unstructured":"McNicholas PD, Murphy TB (2008) Parsimonious Gaussian mixture models. Stat Comput 18(3):285\u2013296","journal-title":"Stat Comput"},{"issue":"5","key":"204_CR48","doi-asserted-by":"crossref","first-page":"1175","DOI":"10.1016\/j.jspi.2009.11.006","volume":"140","author":"PD McNicholas","year":"2010","unstructured":"McNicholas PD (2010) Model-based classification using latent Gaussian mixture models. J Stat Plan Inference 140(5):1175\u20131181","journal-title":"J Stat Plan Inference"},{"issue":"21","key":"204_CR49","doi-asserted-by":"crossref","first-page":"2705","DOI":"10.1093\/bioinformatics\/btq498","volume":"26","author":"PD McNicholas","year":"2010","unstructured":"McNicholas PD, Murphy TB (2010) Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics 26(21):2705\u20132712","journal-title":"Bioinformatics"},{"key":"204_CR50","first-page":"1","volume":"1","author":"PD McNicholas","year":"2014","unstructured":"McNicholas PD, Jampani KR, McDaid AF, Murphy TB, Banks L (2014) Pgmm: parsimonious Gaussian mixture models. R Package Version 1:1","journal-title":"R Package Version"},{"issue":"3","key":"204_CR51","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1111\/1467-9868.00082","volume":"59","author":"X Meng","year":"1997","unstructured":"Meng X, Van Dyk D (1997) The EM algorithm-an old folk song sung to a fast new tune. J R Stat Soc Ser B (Stat Methodol) 59(3):511\u2013567","journal-title":"J R Stat Soc Ser B (Stat Methodol)"},{"key":"204_CR52","doi-asserted-by":"crossref","first-page":"2712","DOI":"10.1016\/j.csda.2011.04.001","volume":"55","author":"A Montanari","year":"2011","unstructured":"Montanari A, Viroli C (2011) Maximum likelihood estimation of mixtures of factor analyzers. Comput Stat Data Anal 55:2712\u20132723","journal-title":"Comput Stat Data Anal"},{"issue":"3","key":"204_CR53","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1007\/s11634-013-0137-3","volume":"7","author":"K Morris","year":"2013","unstructured":"Morris K, McNicholas PD, Scrucca L (2013) Dimension reduction for model-based clustering via mixtures of multivariate t-distributions. Adv Data Anal Classif 7(3):321\u2013338","journal-title":"Adv Data Anal Classif"},{"issue":"9","key":"204_CR54","doi-asserted-by":"crossref","first-page":"2088","DOI":"10.1016\/j.spl.2013.04.011","volume":"83","author":"K Morris","year":"2013","unstructured":"Morris K, McNicholas PD (2013) Dimension reduction for model-based clustering via mixtures of shifted asymmetric Laplace distributions. Stat Probab Lett 83(9):2088\u20132093","journal-title":"Stat Probab Lett"},{"key":"204_CR55","unstructured":"Murray PM, Browne RB, McNicholas PD (2013) Mixtures of \u2018unrestricted\u2019 skew-t factor analyzers. Arxiv preprint arXiv:1310.6224"},{"key":"204_CR56","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/j.csda.2014.03.012","volume":"77","author":"PM Murray","year":"2014","unstructured":"Murray PM, Browne RB, McNicholas PD (2014a) Mixtures of skew-t factor analyzers. Comput Stat Data Anal 77:326\u2013335","journal-title":"Comput Stat Data Anal"},{"issue":"1","key":"204_CR57","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1002\/sta4.43","volume":"3","author":"PM Murray","year":"2014","unstructured":"Murray PM, McNicholas PD, Browne RB (2014b) A mixture of common skew- $$t$$ t factor analyzers. Stat 3(1):68\u201382","journal-title":"Stat"},{"key":"204_CR58","doi-asserted-by":"publisher","unstructured":"O\u2019Hagan A, Murphy TB, Gormley IC, McNicholas PD, Karlis D (2014) Clustering with the multivariate normal inverse Gaussian distribution. Comput Stat Data Anal. doi: 10.1016\/j.csda.2014.09.006","DOI":"10.1016\/j.csda.2014.09.006"},{"key":"204_CR59","unstructured":"R Core Team (2014) R: a language and environment for statistical computing. In: R foundation for statistical computing. Vienna, Austria"},{"key":"204_CR60","doi-asserted-by":"crossref","first-page":"846","DOI":"10.1080\/01621459.1971.10482356","volume":"66","author":"WM Rand","year":"1971","unstructured":"Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66:846\u2013850","journal-title":"J Am Stat Assoc"},{"key":"204_CR61","doi-asserted-by":"crossref","DOI":"10.1201\/b17353","volume-title":"Robust cluster analysis and variable selection","author":"G Ritter","year":"2014","unstructured":"Ritter G (2014) Robust cluster analysis and variable selection. Chapman & Hall, Boca Raton"},{"issue":"2","key":"204_CR62","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1007\/s00357-011-9085-9","volume":"28","author":"R Rocci","year":"2011","unstructured":"Rocci R, Gattone SA, Vichi M (2011) A new dimension reduction method: factor discriminant k-means. J Classif 28(2):210\u2013226","journal-title":"J Classif"},{"key":"204_CR63","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176344136","volume":"6","author":"G Schwarz","year":"1978","unstructured":"Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461\u2013464","journal-title":"Ann Stat"},{"issue":"4","key":"204_CR64","doi-asserted-by":"crossref","first-page":"510","DOI":"10.1080\/03610918.2011.595984","volume":"41","author":"MA Steane","year":"2012","unstructured":"Steane MA, McNicholas PD, Yada R (2012) Model-based classification via mixtures of multivariate t-factor analyzers. Commun Stat-Simul Comput 41(4):510\u2013523","journal-title":"Commun Stat-Simul Comput"},{"issue":"2","key":"204_CR65","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1007\/s11634-014-0165-7","volume":"8","author":"S Subedi","year":"2014","unstructured":"Subedi S, McNicholas PD (2014) Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions. Adv Data Anal Classif 8(2):167\u2013193","journal-title":"Adv Data Anal Classif"},{"key":"204_CR66","unstructured":"Tan PJ, Dowe DL (2005) MML inference of oblique decision trees. In: AI 2004: advances in artificial intelligence. Springer, Berlin, Heidelberg, pp 1082\u20131088"},{"key":"204_CR67","doi-asserted-by":"crossref","unstructured":"Timmerman ME, Ceulemans E, De Roover K, Van Leeuwen K (2013) Subspace K-means clustering. Behav Res Methods 45(4):1011\u20131023","DOI":"10.3758\/s13428-013-0329-y"},{"key":"204_CR68","first-page":"4","volume":"1","author":"C Tortora","year":"2015","unstructured":"Tortora C, Browne RP, Franczak BC, McNicholas PD (2015) MixGHD: model based clustering and classification using the mixture of generalized hyperbolic distributions. R Package Version 1:4","journal-title":"R Package Version"},{"key":"204_CR69","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/S0167-9473(00)00064-5","volume":"37","author":"M Vichi","year":"2001","unstructured":"Vichi M, Kiers H (2001) Factorial k-means analysis for two way data. Comput Stat Data Anal 37:29\u201364","journal-title":"Comput Stat Data Anal"},{"issue":"6","key":"204_CR70","doi-asserted-by":"crossref","first-page":"1169","DOI":"10.1016\/j.spl.2012.02.020","volume":"82","author":"I Vrbik","year":"2012","unstructured":"Vrbik I, McNicholas PD (2012) Analytic calculations for the EM algorithm for multivariate skew-mixture models. Stat Probab Lett 82(6):1169\u20131174","journal-title":"Stat Probab Lett"},{"key":"204_CR71","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.csda.2013.07.008","volume":"71","author":"I Vrbik","year":"2014","unstructured":"Vrbik I, McNicholas PD (2014) Parsimonious skew mixture models for model-based clustering and classification. Comput Stat Data Anal 71:196\u2013210","journal-title":"Comput Stat Data Anal"},{"key":"204_CR72","unstructured":"Wang K, Ng A, McLachlan G (2013) EMMIXskew: the EM algorithm and skew mixture distribution. R Package Version 1:1"},{"key":"204_CR73","doi-asserted-by":"publisher","unstructured":"Wei Y, McNicholas PD (2014) Mixture model averaging for clustering. Adv Data Anal Classif. doi: 10.1007\/s11634-014-0182-6","DOI":"10.1007\/s11634-014-0182-6"},{"key":"204_CR74","unstructured":"Woodbury M (1950) Inverting modified matrices. In: Technical Report 42. Princeton University, Princeton"}],"container-title":["Advances in Data Analysis and Classification"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-015-0204-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11634-015-0204-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-015-0204-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-015-0204-z","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,8]],"date-time":"2024-06-08T06:53:39Z","timestamp":1717829619000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11634-015-0204-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,4,7]]},"references-count":74,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2016,12]]}},"alternative-id":["204"],"URL":"https:\/\/doi.org\/10.1007\/s11634-015-0204-z","relation":{},"ISSN":["1862-5347","1862-5355"],"issn-type":[{"value":"1862-5347","type":"print"},{"value":"1862-5355","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,4,7]]}}}