{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,7]],"date-time":"2024-06-07T12:10:04Z","timestamp":1717762204074},"reference-count":42,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2015,2,25]],"date-time":"2015-02-25T00:00:00Z","timestamp":1424822400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Data Anal Classif"],"published-print":{"date-parts":[[2016,9]]},"DOI":"10.1007\/s11634-015-0200-3","type":"journal-article","created":{"date-parts":[[2015,2,24]],"date-time":"2015-02-24T11:23:34Z","timestamp":1424777014000},"page":"327-349","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Semi-supervised model-based clustering with positive and negative constraints"],"prefix":"10.1007","volume":"10","author":[{"given":"Volodymyr","family":"Melnykov","sequence":"first","affiliation":[]},{"given":"Igor","family":"Melnykov","sequence":"additional","affiliation":[]},{"given":"Semhar","family":"Michael","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,2,25]]},"reference":[{"key":"200_CR1","first-page":"2","volume":"59","author":"E Anderson","year":"1935","unstructured":"Anderson E (1935) The Irises of the Gaspe Peninsula. Bull Am Iris Soc 59:2\u20135","journal-title":"Bull Am Iris Soc"},{"key":"200_CR2","unstructured":"Basu S, Banerjee A, Mooney R (2002) Semi-supervised clustering by seeding. In: Proceedings of the 19th International Conference on Machine Learning, pp 19\u201326"},{"key":"200_CR3","doi-asserted-by":"crossref","unstructured":"Basu S, Bilenko M, Mooney RJ (2004) A Probabilistic Framework for Semi-Supervised Clustering. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 59\u201368","DOI":"10.1145\/1014052.1014062"},{"key":"200_CR4","doi-asserted-by":"crossref","unstructured":"Basu S, Davidson I, Wagstaff K (2008) Constrained clustering: advances in algorithms, theory, and application. Chapman and Hall\/CRC","DOI":"10.1201\/9781584889977"},{"key":"200_CR5","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.csda.2012.12.008","volume":"71","author":"C Bouveyron","year":"2014","unstructured":"Bouveyron C, Brunet C (2014) Model-based clustering of high-dimensional data: a review. Comput Stat Data Anal 71:52\u201378","journal-title":"Comput Stat Data Anal"},{"key":"200_CR6","doi-asserted-by":"crossref","first-page":"2828","DOI":"10.1016\/j.jas.2012.04.028","volume":"39","author":"M Bridge","year":"2012","unstructured":"Bridge M (2012) Locating the origins of wood resources: a review of dendroprovenancing. J Archaeol Sci 39:2828\u20132834","journal-title":"J Archaeol Sci"},{"key":"200_CR7","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1071\/ZO9740417","volume":"22","author":"NA Campbell","year":"1974","unstructured":"Campbell NA, Mahon RJ (1974) A multivariate study of variation in two species of rock crab of genus Leptograsus. Aust J Zool 22:417\u2013425","journal-title":"Aust J Zool"},{"key":"200_CR8","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1002\/sam.10143","volume":"4","author":"W-C Chen","year":"2011","unstructured":"Chen W-C, Maitra R (2011) Model-based clustering of regression time series data via APECM-An AECM Algorithm Sung to an even faster beat. Stat Anal Data Min 4:567\u2013578","journal-title":"Stat Anal Data Min"},{"key":"200_CR9","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1016\/j.patcog.2008.07.014","volume":"42","author":"E C\u00f4me","year":"2009","unstructured":"C\u00f4me E, Oukhellou L, Den\u0153ux T, Aknin P (2009) Learning from partially supervised data using mixture models and belief functions. Pattern Recognit 42:334\u2013348","journal-title":"Pattern Recognit"},{"key":"200_CR10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","volume":"39","author":"AP Dempster","year":"1977","unstructured":"Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood for incomplete data via the EM algorithm (with discussion). J Royal Stat Soc, Ser B 39:1\u201338","journal-title":"J Royal Stat Soc, Ser B"},{"key":"200_CR11","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1109\/89.466659","volume":"3","author":"VV Digalakis","year":"1995","unstructured":"Digalakis VV, Rtischev D, Neumeyer LG (1995) Speaker adaptation using constrained estimation of Gaussian mixtures. IEEE Trans Speech Audio Process 3:357\u2013366","journal-title":"IEEE Trans Speech Audio Process"},{"key":"200_CR12","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1111\/j.1469-1809.1936.tb02137.x","volume":"7","author":"RA Fisher","year":"1936","unstructured":"Fisher RA (1936) The use of multiple measurements in taxonomic poblems. Ann Eugen 7:179\u2013188","journal-title":"Ann Eugen"},{"key":"200_CR13","unstructured":"Forgy E (1965) Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics 21:768\u2013780"},{"key":"200_CR14","doi-asserted-by":"crossref","first-page":"578","DOI":"10.1093\/comjnl\/41.8.578","volume":"41","author":"C Fraley","year":"1998","unstructured":"Fraley C, Raftery AE (1998) How many clusters? Which cluster method? Answers via model-based cluster analysis. Comput J 41:578\u2013588","journal-title":"Comput J"},{"key":"200_CR15","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1198\/016214502760047131","volume":"97","author":"C Fraley","year":"2002","unstructured":"Fraley C, Raftery AE (2002) Model-based clustering and density estimation. J Am Stat Assoc 97:611\u2013631","journal-title":"J Am Stat Assoc"},{"key":"200_CR16","doi-asserted-by":"crossref","unstructured":"Fraley C, Raftery AE (2006) MCLUST Version 3 for R: normal mixture modeling and model-based clustering, Tech. Rep. 504, University of Washington, Department of Statistics, Seattle, WA","DOI":"10.21236\/ADA456562"},{"key":"200_CR17","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1145\/312129.312198","volume-title":"Proceedings of Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San diego","author":"SJ Gaffney","year":"1999","unstructured":"Gaffney SJ, Smyth P (1999) Trajectory clustering with mixture of regression model. Proceedings of Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San diego. CA. ACM, USA, pp 63\u201372"},{"key":"200_CR18","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1177\/095968369700700212","volume":"7","author":"HD Grissino-Mayeri","year":"1997","unstructured":"Grissino-Mayeri HD, Fritts H (1997) The international tree-ring data bank: an enhanced global database serving the Global Scientific Community. Holocene 7:235\u2013238","journal-title":"Holocene"},{"key":"200_CR19","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.jas.2004.09.005","volume":"32","author":"K Haneca","year":"2005","unstructured":"Haneca K, Wazny T, Van Acker J, Beeckman H (2005) Provenancing Baltic timber from art historical objects: success and limitations. J Archaeol Sci 32:261\u2013271","journal-title":"J Archaeol Sci"},{"key":"200_CR20","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s11634-010-0058-3","volume":"4","author":"C Hennig","year":"2010","unstructured":"Hennig C (2010) Methods for merging Gaussian mixture components. Adv Data Anal Classif 4:3\u201334","journal-title":"Adv Data Anal Classif"},{"key":"200_CR21","doi-asserted-by":"crossref","unstructured":"Huang J-T, Hasegawa-Johnson M (2009) On semi-supervised learning of Gaussian mixture models for phonetic classification. In: NAACL HLT workshop on semi-supervised learning","DOI":"10.3115\/1621829.1621839"},{"key":"200_CR22","volume-title":"Dendroclimatology: progress and prospects","author":"MK Hughes","year":"2009","unstructured":"Hughes MK, Swetnam TW, Diaz HF (2009) Dendroclimatology: progress and prospects, vol 11. Princeton, Developments in Paleoenvirnmental ResearchSpringer"},{"issue":"3","key":"200_CR23","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/BF02289588","volume":"32","author":"S Johnson","year":"1967","unstructured":"Johnson S (1967) Hierarchical clustering schemes. Psychometrika 32(3):241\u2013254","journal-title":"Psychometrika"},{"key":"200_CR24","doi-asserted-by":"crossref","unstructured":"Law MHC, Topchy A, Jain AK (2005) Model-based clustering with probabilistic constraints. In: 2005 SIAM International Conference on Data Mining, pp 641\u2013645","DOI":"10.1137\/1.9781611972757.77"},{"key":"200_CR25","first-page":"1","volume":"4","author":"B Liu","year":"2013","unstructured":"Liu B, Shen X, Pan W (2013) Semi-supervised spectral clustering with application to detect population stratification. Front Genet 4:1\u20135","journal-title":"Front Genet"},{"key":"200_CR26","doi-asserted-by":"crossref","first-page":"1528","DOI":"10.1162\/neco.2007.19.6.1528","volume":"19","author":"Z Lu","year":"2007","unstructured":"Lu Z, Leen TK (2007) Penalized probabilistic clustering. Neural Comput 19:1528\u20131567","journal-title":"Neural Comput"},{"key":"200_CR27","first-page":"281","volume":"1","author":"J MacQueen","year":"1967","unstructured":"MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proc Fifth Berkeley Symp 1:281\u2013297","journal-title":"Proc Fifth Berkeley Symp"},{"key":"200_CR28","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1198\/jcgs.2009.08054","volume":"19","author":"R Maitra","year":"2010","unstructured":"Maitra R, Melnykov V (2010) Simulating data to study performance of finite mixture modeling and clustering algorithms. J Comput Graph Stat 19:354\u2013376","journal-title":"J Comput Graph Stat"},{"key":"200_CR29","doi-asserted-by":"crossref","unstructured":"Martinez-Uso A, Pla F, Sotoca J (2010) A semi-supervised Gaussian mixture model for image segmentation. In: International Conference on Pattern Recognition, pp 2941\u20132944","DOI":"10.1109\/ICPR.2010.721"},{"key":"200_CR30","doi-asserted-by":"crossref","DOI":"10.1002\/0471721182","volume-title":"Finite Mixture Models","author":"G McLachlan","year":"2000","unstructured":"McLachlan G, Peel D (2000) Finite Mixture Models. Wiley, New York"},{"key":"200_CR31","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1002\/sam.11138","volume":"5","author":"V Melnykov","year":"2012","unstructured":"Melnykov V (2012) Efficient estimation in model-based clustering of Gaussian regression time series. Stat Anal Data Min 5:95\u201399","journal-title":"Stat Anal Data Min"},{"key":"200_CR32","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.jmva.2013.07.014","volume":"122","author":"V Melnykov","year":"2013","unstructured":"Melnykov V (2013) On the distribution of posterior probabilities in finite mixture models with application in clustering. J Multivar Anal 122:175\u2013189","journal-title":"J Multivar Anal"},{"key":"200_CR33","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v051.i12","volume":"51","author":"V Melnykov","year":"2012","unstructured":"Melnykov V, Chen W-C, Maitra R (2012) MixSim: R package for simulating datasets with pre-specified clustering complexity. J Stat Softw 51:1\u201325","journal-title":"J Stat Softw"},{"key":"200_CR34","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1214\/09-SS053","volume":"4","author":"V Melnykov","year":"2010","unstructured":"Melnykov V, Maitra R (2010) Finite mixture models and model-based clustering. Stat Surv 4:80\u2013116","journal-title":"Stat Surv"},{"key":"200_CR35","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1023\/A:1007692713085","volume":"39","author":"K Nigam","year":"2000","unstructured":"Nigam K, McCallum AK, Thrun S, Mitchell T (2000) Text classification from labeled and unlabeled documents using EM. Mach Learn 39:103\u2013134","journal-title":"Mach Learn"},{"issue":"19","key":"200_CR36","doi-asserted-by":"crossref","first-page":"2388","DOI":"10.1093\/bioinformatics\/btl393","volume":"22","author":"W Pan","year":"2006","unstructured":"Pan W, Shen X, Jiang A, Hebbel R (2006) Semisupervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics 22(19):2388\u20132395","journal-title":"Bioinformatics"},{"key":"200_CR37","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176344136","volume":"6","author":"G Schwarz","year":"1978","unstructured":"Schwarz G (1978) Estimating the dimensions of a model. Ann Stat 6:461\u2013464","journal-title":"Ann Stat"},{"key":"200_CR38","unstructured":"Shental N, Bar-Hillel A, Hertz T, Weinshall D (2003) Computing Gaussian mixture models with EM using equivalence constraints. In: Advances in NIPS, vol. 15"},{"key":"200_CR39","unstructured":"Sloane NJA (2014) The online encyclopedia of integer sequences: A001349 Number of connected graphs with n nodes"},{"key":"200_CR40","unstructured":"Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained $$K$$ K -means Clustering with Background Knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp 577\u2013584"},{"key":"200_CR41","doi-asserted-by":"crossref","first-page":"983","DOI":"10.1145\/1273496.1273620","volume-title":"Proceedings of the 24th International Conference on Machine Learning, New York","author":"L Wang","year":"2007","unstructured":"Wang L, Zhu J, Zou H (2007) Hybrid Huberized Support Vector Machines for Microarray Classification. Proceedings of the 24th International Conference on Machine Learning, New York. NY. ACM, USA, pp 983\u2013990"},{"key":"200_CR42","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1080\/01621459.1963.10500845","volume":"58","author":"JH Ward","year":"1963","unstructured":"Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236\u2013244","journal-title":"J Am Stat Assoc"}],"container-title":["Advances in Data Analysis and Classification"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-015-0200-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11634-015-0200-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-015-0200-3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,7]],"date-time":"2024-06-07T11:14:08Z","timestamp":1717758848000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11634-015-0200-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,2,25]]},"references-count":42,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2016,9]]}},"alternative-id":["200"],"URL":"https:\/\/doi.org\/10.1007\/s11634-015-0200-3","relation":{},"ISSN":["1862-5347","1862-5355"],"issn-type":[{"value":"1862-5347","type":"print"},{"value":"1862-5355","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,2,25]]}}}