{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T07:05:13Z","timestamp":1714547113825},"reference-count":41,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2014,12,31]],"date-time":"2014-12-31T00:00:00Z","timestamp":1419984000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Data Anal Classif"],"published-print":{"date-parts":[[2016,3]]},"DOI":"10.1007\/s11634-014-0194-2","type":"journal-article","created":{"date-parts":[[2014,12,30]],"date-time":"2014-12-30T01:30:24Z","timestamp":1419903024000},"page":"27-52","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":14,"title":["Extreme logistic regression"],"prefix":"10.1007","volume":"10","author":[{"given":"Che","family":"Ngufor","sequence":"first","affiliation":[]},{"given":"Janusz","family":"Wojtusiak","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2014,12,31]]},"reference":[{"issue":"3","key":"194_CR1","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1007\/s00500-008-0323-y","volume":"13","author":"J Alcal\u00e1-Fdez","year":"2009","unstructured":"Alcal\u00e1-Fdez J, S\u00e1nchez L, Garc\u00eda S, Del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM et al (2009) Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3):307\u2013318","journal-title":"Soft Comput"},{"key":"194_CR2","doi-asserted-by":"crossref","unstructured":"Bach FR, Jordan MI (2005) Predictive low-rank decomposition for kernel methods. In: Proceedings of the 22nd international conference on machine learning. ACM, pp 33\u201340","DOI":"10.1145\/1102351.1102356"},{"key":"194_CR3","unstructured":"Bache K, Lichman M (2013) UCI machine learning repository [ http:\/\/archive.ics.uci.edu\/ml ]. Irvine, CA: University of California, School of Information and Computer Science"},{"issue":"2","key":"194_CR4","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1006\/jcph.2002.7176","volume":"182","author":"M Benzi","year":"2002","unstructured":"Benzi M (2002) Preconditioning techniques for large linear systems: a survey. J Comput Phys 182(2):418\u2013477","journal-title":"J Comput Phys"},{"issue":"1","key":"194_CR5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1017\/S0962492904000212","volume":"14","author":"M Benzi","year":"2005","unstructured":"Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14(1):1\u2013137","journal-title":"Acta Numer"},{"key":"194_CR6","doi-asserted-by":"crossref","unstructured":"Cawley GC, Talbot NLC (2004) Efficient model selection for kernel logistic regression. In: IEEE pattern recognition, 2004. ICPR 2004. Proceedings of the 17th international conference, vol 2, pp 439\u2013442","DOI":"10.1109\/ICPR.2004.1334249"},{"issue":"2\u20133","key":"194_CR7","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1007\/s10994-008-5055-9","volume":"71","author":"GC Cawley","year":"2008","unstructured":"Cawley GC, Talbot NLC (2008) Efficient approximate leave-one-out cross-validation for kernel logistic regression. Mach Learn 71(2\u20133):243\u2013264","journal-title":"Mach Learn"},{"issue":"2","key":"194_CR8","doi-asserted-by":"crossref","first-page":"498","DOI":"10.1109\/TNN.2004.841785","volume":"16","author":"W Chu","year":"2005","unstructured":"Chu W, Ong CJ, Keerthi SS (2005) An improved conjugate gradient scheme to the solution of least squares svm. IEEE Trans Neural Netw 16(2):498\u2013501","journal-title":"IEEE Trans Neural Netw"},{"issue":"3","key":"194_CR9","doi-asserted-by":"crossref","first-page":"696","DOI":"10.1109\/TNN.2003.810597","volume":"14","author":"BJ Kruif De","year":"2003","unstructured":"De Kruif BJ, De Vries TJA (2003) Pruning error minimization in least squares support vector machines. IEEE Trans Neural Netw 14(3):696\u2013702","journal-title":"IEEE Trans Neural Netw"},{"key":"194_CR10","first-page":"243","volume":"2","author":"S Fine","year":"2002","unstructured":"Fine S, Scheinberg K (2002) Efficient svm training using low-rank kernel representations. J Mach Learn Res 2:243\u2013264","journal-title":"J Mach Learn Res"},{"key":"194_CR11","unstructured":"Fr\u00e9nay B, Verleysen M (2010) Using svms with randomised feature spaces: an extreme learning approach. In: ESANN"},{"issue":"5","key":"194_CR12","doi-asserted-by":"crossref","first-page":"1115","DOI":"10.1162\/089976602753633411","volume":"14","author":"T Gestel","year":"2002","unstructured":"Gestel T, Suykens J, Lanckriet G, Lambrechts A, Moor B, Vandewalle J (2002) Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel fisher discriminant analysis. Neural Comput 14(5):1115\u20131147","journal-title":"Neural Comput"},{"issue":"2","key":"194_CR13","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1137\/1031049","volume":"31","author":"WW Hager","year":"1989","unstructured":"Hager WW (1989) Updating the inverse of a matrix. SIAM Rev 31(2):221\u2013239","journal-title":"SIAM Rev"},{"key":"194_CR14","volume-title":"The elements of statistical learning: data mining, inference, and prediction: with 200 full-color illustrations","author":"T Hastie","year":"2001","unstructured":"Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: data mining, inference, and prediction: with 200 full-color illustrations. Springer, New York"},{"key":"194_CR15","doi-asserted-by":"crossref","DOI":"10.1201\/9781420010572","volume-title":"Handbook of linear algebra","author":"L Hogben","year":"2006","unstructured":"Hogben L (2006) Handbook of linear algebra. CRC Press, Boca Raton"},{"issue":"4","key":"194_CR16","doi-asserted-by":"crossref","first-page":"879","DOI":"10.1109\/TNN.2006.875977","volume":"17","author":"G-B Huang","year":"2006","unstructured":"Huang G-B, Chen L, Siew C-K (2006a) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879\u2013892","journal-title":"IEEE Trans Neural Netw"},{"issue":"1","key":"194_CR17","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","volume":"70","author":"G-B Huang","year":"2006","unstructured":"Huang G-B, Zhu Q-Y, Siew C-K (2006b) Extreme learning machine: theory and applications. Neurocomputing 70(1):489\u2013501","journal-title":"Neurocomputing"},{"issue":"1","key":"194_CR18","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.neucom.2010.02.019","volume":"74","author":"G-B Huang","year":"2010","unstructured":"Huang G-B, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74(1):155\u2013163","journal-title":"Neurocomputing"},{"issue":"2","key":"194_CR19","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1109\/TSMCB.2011.2168604","volume":"42","author":"G-B Huang","year":"2012","unstructured":"Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513\u2013529","journal-title":"IEEE Trans Syst Man Cybern Part B Cybern"},{"issue":"3","key":"194_CR20","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1109\/TNN.2006.889500","volume":"18","author":"L Jiao","year":"2007","unstructured":"Jiao L, Bo L, Wang L (2007) Fast sparse approximation for least squares support vector machine. IEEE Trans Neural Netw 18(3):685\u2013697","journal-title":"IEEE Trans Neural Netw"},{"key":"194_CR21","doi-asserted-by":"crossref","unstructured":"Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab\u2014an S4 package for kernel methods in R. J Stat Softw 11(9):1\u201320. http:\/\/www.jstatsoft.org\/v11\/i09\/ . Accessed 21 Dec 2014","DOI":"10.18637\/jss.v011.i09"},{"key":"194_CR22","unstructured":"Katz M, Schaffner M, Andelic E, Kr\u00fcger S, Wendemuth A (2005) Sparse kernel logistic regression for phoneme classification. In: Proceedings of 10th international conference on speech and computer (SPECOM), Citeseer, vol 2, pp 523\u2013526"},{"issue":"2","key":"194_CR23","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1162\/089976603762553013","volume":"15","author":"SS Keerthi","year":"2003","unstructured":"Keerthi SS, Shevade SK (2003) Smo algorithm for least-squares svm formulations. Neural Comput 15(2):487\u2013507","journal-title":"Neural Comput"},{"issue":"1\u20133","key":"194_CR24","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s10994-005-0768-5","volume":"61","author":"SS Keerthi","year":"2005","unstructured":"Keerthi SS, Duan KB, Shevade SK, Poo AN (2005) A fast dual algorithm for kernel logistic regression. Mach Learn 61(1\u20133):151\u2013165","journal-title":"Mach Learn"},{"key":"194_CR25","unstructured":"Komarek P (2004) Logistic regression for data mining and high-dimensional classification. Robotics Institute, p 222"},{"key":"194_CR26","doi-asserted-by":"crossref","unstructured":"Kuh A (2004) Least squares kernel methods and applications. In: Soft computing in communications. Springer, Berlin Heidelberg, pp 365\u2013387","DOI":"10.1007\/978-3-540-45090-0_17"},{"key":"194_CR27","doi-asserted-by":"crossref","unstructured":"Kulis B, Sustik M, Dhillon I (2006) Learning low-rank kernel matrices. In: Proceedings of the 23rd international conference on machine learning. ACM, pp 505\u2013512","DOI":"10.1145\/1143844.1143908"},{"key":"194_CR28","first-page":"173","volume":"37","author":"S Borne Le","year":"2010","unstructured":"Le Borne S, Ngufor C (2010) An implicit approximate inverse preconditioner for saddle point problems. Electron Trans Numer Anal 37:173\u2013188","journal-title":"Electron Trans Numer Anal"},{"key":"194_CR29","doi-asserted-by":"crossref","unstructured":"Liu Q, He Q, Shi Z (2008) Extreme support vector machine classifier. In: Advances in knowledge discovery and data mining. Springer, pp 222\u2013233","DOI":"10.1007\/978-3-540-68125-0_21"},{"key":"194_CR30","doi-asserted-by":"crossref","unstructured":"Mercer J (1909) Functions of positive and negative type, and their connection with the theory of integral equations. In: Philosophical transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character, vol 209, pp 415\u2013446","DOI":"10.1098\/rsta.1909.0016"},{"key":"194_CR31","unstructured":"Ngufor C, Wojtusiak J (2013) Learning from large-scale distributed health data: an approximate logistic regression approach. ICML 13: role of machine learning in transforming healthcare"},{"key":"194_CR32","unstructured":"R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http:\/\/www.R-project.org\/ISBN3-900051-07-0"},{"key":"194_CR33","doi-asserted-by":"crossref","unstructured":"Ramani S, Fessler JA (2010) An accelerated iterative reweighted least squares algorithm for compressed sensing mri. In: 2010 IEEE international symposium, IEEE biomedical imaging: from nano to macro, pp 257\u2013260","DOI":"10.1109\/ISBI.2010.5490364"},{"key":"194_CR34","unstructured":"Suykens JAK, Lukas L, Van Dooren P, De Moor B, Vandewalle J (1999) Least squares support vector machine classifiers: a large scale algorithm. In: European conference on circuit theory and design, ECCTD, Citeseer, vol 99, pp 839\u2013842"},{"issue":"3","key":"194_CR35","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1023\/A:1018628609742","volume":"9","author":"JAK Suykens","year":"1999","unstructured":"Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293\u2013300","journal-title":"Neural Process Lett"},{"key":"194_CR36","doi-asserted-by":"crossref","unstructured":"Suykens JAK, Lukas L, Vandewalle J (2000) Sparse approximation using least squares support vector machines. In: The 2000 IEEE international symposium on circuits and systems, 2000. IEEE Proceedings. ISCAS 2000 Geneva, vol 2, pp 757\u2013760","DOI":"10.1109\/ISCAS.2000.856439"},{"issue":"1","key":"194_CR37","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/S0925-2312(01)00644-0","volume":"48","author":"JAK Suykens","year":"2002","unstructured":"Suykens JAK, De Brabanter J, Lukas L, Vandewalle J (2002a) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1):85\u2013105","journal-title":"Neurocomputing"},{"key":"194_CR38","doi-asserted-by":"crossref","unstructured":"Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Suykens JAK, Van Gestel T (2002b) Least squares support vector machines, vol 4. World Scientific, Singapore","DOI":"10.1142\/5089"},{"issue":"6","key":"194_CR39","doi-asserted-by":"crossref","first-page":"1541","DOI":"10.1109\/TNN.2005.852239","volume":"16","author":"X Zeng","year":"2005","unstructured":"Zeng X, Chen X-W (2005) Smo-based pruning methods for sparse least squares support vector machines. IEEE Trans Neural Netw 16(6):1541\u20131546","journal-title":"IEEE Trans Neural Netw"},{"key":"194_CR40","doi-asserted-by":"crossref","unstructured":"Zhu J, Hastie T (2002) Support vector machines, kernel logistic regression and boosting. In: Multiple classifier systems. Springer, pp 16\u201326","DOI":"10.1007\/3-540-45428-4_2"},{"issue":"1","key":"194_CR41","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1198\/106186005X25619","volume":"14","author":"J Zhu","year":"2005","unstructured":"Zhu J, Hastie T (2005) Kernel logistic regression and the import vector machine. J Comput Graph Stat 14(1):185\u2013205","journal-title":"J Comput Graph Stat"}],"container-title":["Advances in Data Analysis and Classification"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-014-0194-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11634-014-0194-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-014-0194-2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T14:46:35Z","timestamp":1559400395000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11634-014-0194-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,12,31]]},"references-count":41,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2016,3]]}},"alternative-id":["194"],"URL":"https:\/\/doi.org\/10.1007\/s11634-014-0194-2","relation":{},"ISSN":["1862-5347","1862-5355"],"issn-type":[{"value":"1862-5347","type":"print"},{"value":"1862-5355","type":"electronic"}],"subject":[],"published":{"date-parts":[[2014,12,31]]}}}