{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,7,30]],"date-time":"2023-07-30T18:40:39Z","timestamp":1690742439343},"reference-count":30,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2014,12,17]],"date-time":"2014-12-17T00:00:00Z","timestamp":1418774400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Data Anal Classif"],"published-print":{"date-parts":[[2016,9]]},"DOI":"10.1007\/s11634-014-0193-3","type":"journal-article","created":{"date-parts":[[2014,12,16]],"date-time":"2014-12-16T13:32:45Z","timestamp":1418736765000},"page":"285-304","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Pruning boxes in a box-based classification method"],"prefix":"10.1007","volume":"10","author":[{"given":"Vincenzo","family":"Spinelli","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2014,12,17]]},"reference":[{"key":"193_CR1","unstructured":"Almuallim H, Dietterich TG (1991) Learning with many irrelevant features. In: Proceedings of the ninth national conference on artificial intelligence, vol 2. AAAI Press, Menlo Park, CA, pp 547\u2013552"},{"key":"193_CR2","unstructured":"Bache K, Lichman M (2013) UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. http:\/\/www.ics.uci.edu\/~mlearn\/MLRepository.html"},{"issue":"5","key":"193_CR3","doi-asserted-by":"crossref","first-page":"889","DOI":"10.1016\/j.camwa.2006.12.093","volume":"55","author":"P Bertolazzi","year":"2008","unstructured":"Bertolazzi P, Felici G, Festa P, Lancia G (2008) Logic classification and feature selection for biomedical data. Comput Math Appl 55(5):889\u2013899","journal-title":"Comput Math Appl"},{"key":"193_CR4","first-page":"163","volume":"79","author":"E Boros","year":"1997","unstructured":"Boros E, Hammer PL, Ibaraki T, Kogan A (1997) Logical analysis of numerical data. Math Progr 79:163\u2013190","journal-title":"Math Progr"},{"issue":"2","key":"193_CR5","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1109\/69.842268","volume":"12","author":"E Boros","year":"2000","unstructured":"Boros E, Hammer PL, Ibaraki T, Kogan A, Mayoraz E, Muchnik I (2000) An implementation of logical analysis of data. Knowl Data Eng IEEE Trans 12(2):292\u2013306","journal-title":"Knowl Data Eng IEEE Trans"},{"key":"193_CR6","doi-asserted-by":"crossref","unstructured":"Davenport MA, Baraniuk MG, Scott CD (2006a) Controlling false alarms with support vector machines. In: IEEE international conference on acoustics, speech, and signal processing (ICASSP), Toulouse, France","DOI":"10.1109\/ICASSP.2006.1661344"},{"key":"193_CR7","doi-asserted-by":"crossref","unstructured":"Davenport MA, Baraniuk MG, Scott CD (2006b) Learning minimum volume sets with support vector machines. In: IEEE workshop on machine learning for signal processing (MLSP), Maynooth, Ireland","DOI":"10.1109\/MLSP.2006.275565"},{"key":"193_CR8","doi-asserted-by":"crossref","unstructured":"Davenport MA, Baraniuk RG, Scott C (2010) Tuning support vector machines for minimax and neyman-pearson classification. IEEE Trans Pattern Anal Mach Intell 32(10):1888\u20131898. http:\/\/www.ece.rice.edu\/~md\/np_svm.php","DOI":"10.1109\/TPAMI.2010.29"},{"issue":"3","key":"193_CR9","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1023\/A:1020546910706","volume":"23","author":"J Eckstein","year":"2002","unstructured":"Eckstein J, Hammer PL, Liu Y, Nediak M, Simeone B (2002) The maximum box problem and its application to data analysis. Comput Optim Appl 23(3):285\u2013298","journal-title":"Comput Optim Appl"},{"key":"193_CR10","doi-asserted-by":"crossref","unstructured":"Felici G, Simeone B, Spinelli V (2010) Classification techniques and error control in logic mining. In: Stahlbock R, Crone SF, Lessmann S (eds) Data mining, Annals of information systems, vol 8. Springer, London, pp 99\u2013119. ISBN:978-1-4419-1279-4","DOI":"10.1007\/978-1-4419-1280-0_5"},{"key":"193_CR11","doi-asserted-by":"crossref","unstructured":"Grudzinski K, Grochowski M, Duch W (2010) Pruning classification rules with reference vector selection methods. In: Rutkowski L, Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM (eds) ICAISC (1), Lecture notes in computer science, vol 6113. Springer, Berlin, Heidelberg, pp 347\u2013354","DOI":"10.1007\/978-3-642-13208-7_44"},{"key":"193_CR12","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.dam.2004.05.002","volume":"144","author":"PL Hammer","year":"2004","unstructured":"Hammer PL, Liu Y, Simeone B, Szedm\u00e0k S (2004) Saturated systems of homogeneous boxes and the logical analysis of numerical data. Discret Appl Math 144:103\u2013109","journal-title":"Discret Appl Math"},{"key":"193_CR13","unstructured":"Harris E (2002) Information gain versus gain ratio: a study of split method biases. In: ISAIM. http:\/\/dblp.uni-trier.de\/db\/conf\/isaim\/isaim2002.html"},{"key":"193_CR14","doi-asserted-by":"crossref","unstructured":"Huang J, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. Knowl Data Eng IEEE Trans 17(3):299\u2013310","DOI":"10.1109\/TKDE.2005.50"},{"key":"193_CR15","doi-asserted-by":"crossref","unstructured":"Kaneko A, Kano M (2003) Discrete geometry on red and blue points in the plane\u2013a survey. In: Discrete and computational geometry. Springer, Berlin, Heidelberg, pp 551\u2013570","DOI":"10.1007\/978-3-642-55566-4_25"},{"key":"193_CR16","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1023\/A:1017181826899","volume":"30","author":"R Kohavi","year":"1998","unstructured":"Kohavi R, Provost F (1998) Glossary of terms. Mach Learn 30:271\u2013274","journal-title":"Mach Learn"},{"key":"193_CR17","unstructured":"Maloof MA (2003) Learning when data sets are imbalanced and when costs are unequal and unknown. In: ICML-2003 workshop on learning from imbalanced data sets"},{"key":"193_CR18","unstructured":"Maravalle M, Ricca F, Simeone B, Spinelli V (2014) Carpal tunnel syndrome automatic classification: electromyography vs. ultrasound imaging. In: Proceedings of TOP, pp 1\u201324"},{"key":"193_CR19","doi-asserted-by":"crossref","unstructured":"McCarthy K, Zabar B, Weiss G (2005) Does cost-sensitive learning beat sampling for classifying rare classes? In: Proceedings of the 1st international workshop on utility-based data mining, pp 69\u201377","DOI":"10.1145\/1089827.1089836"},{"key":"193_CR20","first-page":"853","volume-title":"The data mining and knowledge discovery handbook","author":"VC Nitesh","year":"2005","unstructured":"Nitesh VC (2005) Data mining for imbalanced datasets: an overview. In: Maimon O, Rokach L (eds) The data mining and knowledge discovery handbook. Springer, New York, pp 853\u2013867"},{"key":"193_CR21","unstructured":"Schaffer C (1994) A conservative law for generalization performance. In: Cohen WW, Hirsh H (eds) Eleventh international conference on machine learning, ICML. Morgan Kaufmann, San Francisco, CA, pp 259\u2013265. ISBN:1-55860-335-2"},{"key":"193_CR22","unstructured":"Shah D, Lakshmanan LVS, Ramamritham K, Sudarshan S (1999) Interestingness and pruning of mined patterns. In: 1999 ACM SIGMOD workshop on research issues in data mining and knowledge discovery. http:\/\/dblp.uni-trier.de\/db\/conf\/dmkd\/dmkd1999.html"},{"key":"193_CR23","unstructured":"Simeone B, Spinelli V (2007) The optimization problem framework for box clustering approach in logic mining. In: Book of abstract of Euro XXII\u201322nd European conference on operational research, Euro XXII"},{"key":"193_CR24","unstructured":"Simeone B, Felici G, Spinelli V (2007) A graph coloring approach for box clustering techniques in logic mining. In: Book of Abstract of Euro XXII\u201322nd European conference on operational research, Euro XXII"},{"key":"193_CR25","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-031-02149-7","volume-title":"Semi-supervised learning and domain adaptation in natural language processing","author":"A Sogaard","year":"2013","unstructured":"Sogaard A (2013) Semi-supervised learning and domain adaptation in natural language processing. Morgan & Claypool, San Rafael"},{"key":"193_CR26","unstructured":"Weka (2013) Machine learning group\u2013 data mining software in java. University of Waikato, Department of Computer Science. http:\/\/www.cs.waikato.ac.nz\/ml\/weka"},{"key":"193_CR27","unstructured":"Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, San Francisco, CA. ISBN:0123748569, 9780123748560"},{"key":"193_CR28","unstructured":"Wu S, Flach P (2005) A scored AUC metric for classifier evaluation and selection In: ICML\u201905 workshop on ROC Analysis in Machine Learning, Bonn, Germany, August 2005"},{"key":"193_CR29","doi-asserted-by":"crossref","unstructured":"Zadrozny B, Langford J, Abe N (2003) Cost-sensitive learning by cost-proportionate example weighting. In: Proceedings of the third IEEE international conference on data mining","DOI":"10.1109\/ICDM.2003.1250950"},{"issue":"3","key":"193_CR30","first-page":"73","volume":"17","author":"S Zilberstein","year":"1996","unstructured":"Zilberstein S (1996) Using anytime algorithms in intelligent systems. AI Mag 17(3):73\u201383","journal-title":"AI Mag"}],"container-title":["Advances in Data Analysis and Classification"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-014-0193-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11634-014-0193-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11634-014-0193-3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,30]],"date-time":"2023-07-30T18:20:41Z","timestamp":1690741241000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11634-014-0193-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,12,17]]},"references-count":30,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2016,9]]}},"alternative-id":["193"],"URL":"https:\/\/doi.org\/10.1007\/s11634-014-0193-3","relation":{},"ISSN":["1862-5347","1862-5355"],"issn-type":[{"value":"1862-5347","type":"print"},{"value":"1862-5355","type":"electronic"}],"subject":[],"published":{"date-parts":[[2014,12,17]]}}}