{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T14:13:04Z","timestamp":1725804784433},"reference-count":31,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2018,9,27]],"date-time":"2018-09-27T00:00:00Z","timestamp":1538006400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int. J. Autom. Comput."],"published-print":{"date-parts":[[2019,2]]},"DOI":"10.1007\/s11633-018-1143-x","type":"journal-article","created":{"date-parts":[[2018,9,27]],"date-time":"2018-09-27T05:32:53Z","timestamp":1538026373000},"page":"16-26","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":40,"title":["Potential Bands of Sentinel-2A Satellite for Classification Problems in Precision Agriculture"],"prefix":"10.1007","volume":"16","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0996-2586","authenticated-orcid":false,"given":"Tian-Xiang","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3121-7208","authenticated-orcid":false,"given":"Jin-Ya","family":"Su","sequence":"additional","affiliation":[]},{"given":"Cun-Jia","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Wen-Hua","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,9,27]]},"reference":[{"issue":"1","key":"1143_CR1","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/0034-4257(80)90096-6","volume":"10","author":"C. J. Tucker","year":"1980","unstructured":"C. J. Tucker. Remote sensing of leaf water content in the near infrared. Remote Sensing of Environment, vol. 10, no. 1, pp. 23\u201332, 1980. DOI: 10.1016\/0034-4257(80)90096-6.","journal-title":"Remote Sensing of Environment"},{"issue":"10","key":"1143_CR2","doi-asserted-by":"publisher","first-page":"1887","DOI":"10.1080\/01431169308954010","volume":"14","author":"J. Penuelas","year":"1993","unstructured":"J. Penuelas, I. Filella, C. Biel, L. Serrano, R. Save. The reflectance at the 950\u2013970 nm region as an indicator of plant water status. International Journal of Remote Sensing, vol. 14, no. 10, pp. 1887\u20131905, 1993. DOI: 10.1080\/01431169308954010.","journal-title":"International Journal of Remote Sensing"},{"key":"1143_CR3","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1016\/j.rse.2013.06.004","volume":"137","author":"M. J. Hill","year":"2013","unstructured":"M. J. Hill. Vegetation index suites as indicators of vegetation state in grassland and savanna: an analysis with simulated Sentinel 2 data for a North American transect. Remote Sensing of Environment, vol. 137, pp. 94\u2013111, 2013. DOI: 10.1016\/j.rse.2013.06.004.","journal-title":"Remote Sensing of Environment"},{"key":"1143_CR4","first-page":"309","volume-title":"Proceedings of the 3rd ERTS Symposium","author":"W. Rouse","year":"1974","unstructured":"W. Rouse, R. H. Haas, J. A. Schell, D. W. Deering. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd ERTS Symposium, Washington DC, USA, pp. 309\u2013317, 1974."},{"issue":"4","key":"1143_CR5","doi-asserted-by":"publisher","first-page":"1456","DOI":"10.1109\/JSTARS.2015.2398034","volume":"8","author":"Y. Gao","year":"2015","unstructured":"Y. Gao, J. P. Waler, M. Allahmoradi, A. Monerris, D. Ryu, T. J. Jackson. Optical sensing of vegetation water content: a synthesis study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 4, pp. 1456\u20131464, 2015. DOI: 10.1109\/JSTARS.2015.2398034.","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"issue":"3","key":"1143_CR6","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1016\/S0034-4257(96)00067-3","volume":"58","author":"B. C. Gao","year":"1996","unstructured":"B. C. Gao. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, vol. 58, no. 3, pp. 257\u2013266, 1996. DOI: 10.1016\/S0034-4257(96)00067-3.","journal-title":"Remote Sensing of Environment"},{"issue":"4","key":"1143_CR7","doi-asserted-by":"publisher","first-page":"475","DOI":"10.1016\/j.rse.2003.10.021","volume":"92","author":"T. J. Jackson","year":"2004","unstructured":"T. J. Jackson, D. Y. Chen, M. Cosh, F. Q. Li, M. Anderson, C. Walthall, P. Doriaswamy, E. R. Hunta. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, vol. 92, no. 4, pp. 475\u2013482, 2004. DOI: 10.1016\/j.rse.2003.10.021.","journal-title":"Remote Sensing of Environment"},{"issue":"2-3","key":"1143_CR8","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1016\/j.rse.2005.07.008","volume":"98","author":"D. Y. Chen","year":"2005","unstructured":"D. Y. Chen, J. F. Huang, T. J. Jackson. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-wave and short-wave infrared bands. Remote Sensing of Environment, vol. 98, no. 2\u20133, pp. 225\u2013236, 2005. DOI: 10.1016\/j.rse.2005.07.008.","journal-title":"Remote Sensing of Environment"},{"issue":"3","key":"1143_CR9","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1016\/S0034-4257(97)00092-8","volume":"62","author":"D. A. Roberts","year":"1997","unstructured":"D. A. Roberts, R. O. Green, J. B. Adams. Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS. Remote Sensing of Environment, vol. 62, no. 3, pp. 223\u2013240, 1997. DOI: 10.1016\/S0034-4257(97)00092-8.","journal-title":"Remote Sensing of Environment"},{"issue":"5","key":"1143_CR10","doi-asserted-by":"publisher","first-page":"2514","DOI":"10.1016\/j.rse.2007.11.014","volume":"112","author":"M. T. Yilmaz","year":"2008","unstructured":"M. T. Yilmaz, E. R. Hunt, T. J. Jackson. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sensing of Environment, vol. 112, no. 5, pp. 2514\u20132522, 2008. DOI: 10.1016\/j.rse.2007.11.014.","journal-title":"Remote Sensing of Environment"},{"key":"1143_CR11","first-page":"2677","volume-title":"Proceedings of IEEE International Geoscience and Remote Sensing Symposium","author":"P. Martimor","year":"2007","unstructured":"P. Martimor, O. Arino, M. Berger, R. Biasutti, B. Carnicero, U. Del Bello, V. Fernandez, F. Gascon, B. Greco, P. Silvestrin, F. Spoto, O. Sy. Sentinel-2 optical high resolution mission for GMES operational services. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium, IEEE, Barcelona, Spain, pp. 2677\u20132680, 2007. DOI: 10.1109\/IGARSS.2007.4423394."},{"key":"1143_CR12","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/j.rse.2011.11.026","volume":"120","author":"M. Drusch","year":"2012","unstructured":"M. Drusch, U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, C. Isola, P. Laberinti, P. Martimort, A. Meygret, F. Spoto, O. Sy, F. Marchese, P. Bargellini. Sentinel-2: ESA\u2019s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, vol. 120, pp. 25\u201326, 2012. DOI: 10.1016\/j.rse.2011.11.026.","journal-title":"Remote Sensing of Environment"},{"issue":"12","key":"1143_CR13","doi-asserted-by":"publisher","first-page":"2726","DOI":"10.3390\/s17122726","volume":"17","author":"J. Y. Su","year":"2017","unstructured":"J. Y. Su, D. W. Yi, C. J. Liu, L. Guo, W. H. Chen. Dimension reduction aided hyperspectral image classification with a small-sized training dataset: experimental comparisons. Sensors, vol. 17, no. 12, Article number 2726, 2017. DOI: 10.3390\/s17122726.","journal-title":"Sensors"},{"key":"1143_CR14","first-page":"1","volume-title":"Proceedings of the 23rd International Conference Automation and Computing","author":"T. X. Zhang","year":"2017","unstructured":"T. X. Zhang, J. Y. Su, C. J. Liu, W. H. Chen, H. Liu, G. Liu. Band selection in Sentinel-2 satellite for agriculture applications. In Proceedings of the 23rd International Conference Automation and Computing, Huddersfield, UK, pp. 1\u20136, 2017."},{"issue":"6","key":"1143_CR15","first-page":"3768","volume":"62","author":"Z. W. Gao","year":"2015","unstructured":"Z. W. Gao, C. Cecati, S. X. Ding. A Survey of fault diagnosis and fault-tolerant techniques-Part II: fault diagnosis with knowledge-based and hybrid\/active approaches. IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3768\u20133774, 2015. DOI: 10.1109\/TIE.2015.2419013.","journal-title":"IEEE Transactions on Industrial Electronics"},{"issue":"3","key":"1143_CR16","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1007\/s11633-014-0789-2","volume":"11","author":"P. Bromova","year":"2014","unstructured":"P. Bromova, P. Skoda, J. Vazny. Classification of spectra of emission line stars using machine learning techniques. International Journal of Automation and Computing, vol. 11, no. 3, pp. 265\u2013273, 2014. DOI: 10.1007\/s11633-014-0789-2.","journal-title":"International Journal of Automation and Computing"},{"issue":"4","key":"1143_CR17","doi-asserted-by":"publisher","first-page":"299","DOI":"10.3390\/rs8040299","volume":"8","author":"M. Pesaresi","year":"2016","unstructured":"M. Pesaresi, C. Corbane, A. Julea, A. J. Florczyk, V. Syrris, P. Soille. Assessment of the added-value of sentinel-2 for detecting built-up areas. Remote Sensing, vol. 8, no. 4, Article number 299, 2016. DOI: 10.3390\/rs8040299. DOI: 10.3390\/rs8040299.","journal-title":"Remote Sensing"},{"issue":"12","key":"1143_CR18","doi-asserted-by":"publisher","first-page":"1014","DOI":"10.3390\/rs8121014","volume":"8","author":"E. Mandanici","year":"2016","unstructured":"E. Mandanici, G. Bitelli. Preliminary comparison of sentinel-2 and Landsat 8 imagery for a combined use. Remote Sensing, vol. 8, no. 12, Article number 1014, 2016. DOI: 10.3390\/rs8121014.","journal-title":"Remote Sensing"},{"issue":"11","key":"1143_CR19","doi-asserted-by":"publisher","first-page":"883","DOI":"10.3390\/rs8110883","volume":"8","author":"H. van der Werff","year":"2016","unstructured":"H. van der Werff, F. van der Meer. Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing. Remote Sensing, vol. 8, no. 11, Article number 883, 2016. DOI: 10.3390\/rs8110883.","journal-title":"Remote Sensing"},{"key":"1143_CR20","first-page":"1","volume":"6","author":"R. Richter","year":"2007","unstructured":"R. Richter. Atmospheric\/Topographic Correction for Satellite Imagery (ATCOR-2\/3 User Guide). ATCOR-2\/3 User Guide, Version 6.3, pp. 1\u201371, 2007.","journal-title":"ATCOR-2\/3 User Guide"},{"issue":"5","key":"1143_CR21","doi-asserted-by":"publisher","first-page":"1647","DOI":"10.5194\/gmd-9-1647-2016","volume":"9","author":"C. Emde","year":"2016","unstructured":"C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, L. Bugliaro. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geoscientific Model Development, vol. 9, no. 5, pp. 1647\u20131672, 2016. DOI: 10.5194\/gmd-9-1647-2016.","journal-title":"Geoscientific Model Development"},{"key":"1143_CR22","volume-title":"Technical Report","author":"D. Koller","year":"1996","unstructured":"D. Koller, M. Sahami. Toward Optimal Feature Selection. Technical Report, Stanford InfoLab, Stanford Unversity, USA, 1996."},{"key":"1143_CR23","volume-title":"Generalized fisher score for feature selection.","author":"Q. Q. Gu","year":"2012","unstructured":"Q. Q. Gu, Z. H. Li, J. W. Han. Generalized fisher score for feature selection. https:\/\/doi.org\/arxiv.org\/abs\/1202.3725 , 2012."},{"issue":"8","key":"1143_CR24","doi-asserted-by":"publisher","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","volume":"27","author":"H. C. Peng","year":"2005","unstructured":"H. C. Peng, F. H. Long, C. Ding. Feature selection based on mutual information criteria of max-dependency, maxrelevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226\u20131238, 2005. DOI: 10.1109\/TPAMI.2005.159.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"2","key":"1143_CR25","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1007\/s11633-017-1053-3","volume":"14","author":"B. Zhao","year":"2017","unstructured":"B. Zhao, J. S. Feng, X. Wu, S. C. Yan. A survey on deep learning-based fine-grained object classification and semantic segmentation. International Journal of Automation and Computing, vol. 14, no. 2, pp. 119\u2013135, 2017. DOI: 10.1007\/s11633-017-1053-3.","journal-title":"International Journal of Automation and Computing"},{"key":"1143_CR26","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1145\/130385.130401","volume-title":"Proceedings of the Fifth Annual Workshop on Computational Learning Theory","author":"B. E. Boser","year":"1992","unstructured":"B. E. Boser, I. M. Guyon, V. N. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ACM, Pittsburgh, USA, pp. 144\u2013152, 1992. DOI: 10.1145\/130385.130401."},{"key":"1143_CR27","volume-title":"Statistical Learning Theory","author":"V. N. Vapnik","year":"1998","unstructured":"V. N. Vapnik. Statistical Learning Theory, New York, USA: Wiley, 1998."},{"issue":"12","key":"1143_CR28","doi-asserted-by":"publisher","first-page":"1025","DOI":"10.3390\/rs8121025","volume":"8","author":"C. M. Gevaert","year":"2016","unstructured":"C. M. Gevaert, C. Persello, G. Vosselman. Optimizing multiple kernel learning for the classification of UAV data. Remote Sensing, vol. 8, no. 12, Article number 1025, 2016. DOI: 10.3390\/rs8121025.","journal-title":"Remote Sensing"},{"issue":"3","key":"1143_CR29","doi-asserted-by":"publisher","first-page":"290","DOI":"10.1007\/s11633-015-0912-z","volume":"15","author":"M. Goudjil","year":"2018","unstructured":"M. Goudjil, M. Koudil, M. Bedda, N. Ghoggali. A novel active learning method using SVM for text classification. International Journal of Automation and Computing, vol. 15, no. 3, pp. 290\u2013298, 2018. DOI: 10.1007\/s11633-015-0912-z.","journal-title":"International Journal of Automation and Computing"},{"issue":"3","key":"1143_CR30","doi-asserted-by":"publisher","first-page":"189","DOI":"10.5589\/m07-025","volume":"33","author":"Y. H. Yi","year":"2007","unstructured":"Y. H. Yi, D. W. Yang, D. Y. Chen, J. F. Huang. Retrieving crop physiological parameters and assessing water deficiency using MODIS data during the winter wheat growing period. Canadian Journal of Remote Sensing, vol. 33, no. 3, pp. 189\u2013202, 2007. DOI: 10.5589\/m07-025.","journal-title":"Canadian Journal of Remote Sensing"},{"issue":"2","key":"1143_CR31","first-page":"26","volume":"1","author":"C. Slave","year":"2014","unstructured":"C. Slave. Analysis of agricultural areas using satellite images. International Journal of Academic Research in Environment and Geography, vol. 1, no. 2, pp. 26\u201332, 2014.","journal-title":"International Journal of Academic Research in Environment and Geography"}],"container-title":["International Journal of Automation and Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11633-018-1143-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11633-018-1143-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11633-018-1143-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,2]],"date-time":"2022-09-02T20:48:00Z","timestamp":1662151680000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11633-018-1143-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,9,27]]},"references-count":31,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2019,2]]}},"alternative-id":["1143"],"URL":"https:\/\/doi.org\/10.1007\/s11633-018-1143-x","relation":{},"ISSN":["1476-8186","1751-8520"],"issn-type":[{"value":"1476-8186","type":"print"},{"value":"1751-8520","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,9,27]]},"assertion":[{"value":"13 March 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 June 2018","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 September 2018","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}