{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,7,26]],"date-time":"2023-07-26T04:26:56Z","timestamp":1690345616531},"reference-count":15,"publisher":"Springer Science and Business Media LLC","issue":"8","license":[{"start":{"date-parts":[[2023,7,25]],"date-time":"2023-07-25T00:00:00Z","timestamp":1690243200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,7,25]],"date-time":"2023-07-25T00:00:00Z","timestamp":1690243200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Datenschutz Datensich"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1007\/s11623-023-1805-x","type":"journal-article","created":{"date-parts":[[2023,7,25]],"date-time":"2023-07-25T18:02:45Z","timestamp":1690308165000},"page":"492-496","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Quantifying Attribution-based Explainable AI for Robustness Evaluations"],"prefix":"10.1007","volume":"47","author":[{"given":"Leo","family":"Wilms","sequence":"first","affiliation":[]},{"given":"Arndt","family":"von Twickel","sequence":"additional","affiliation":[]},{"given":"Matthias","family":"Neu","sequence":"additional","affiliation":[]},{"given":"Christian","family":"Berghoff","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,25]]},"reference":[{"key":"1805_CR1","unstructured":"Christian Berghoff et al.: \u201cTowards Auditable AI Systems \u2013 From principles to practice\u201d, May 2022."},{"key":"1805_CR2","unstructured":"Christian Berghoff et al.: \u201cTowards Auditable AI Systems \u2013 Current status and future directions\u201d, May 2021."},{"key":"1805_CR3","doi-asserted-by":"publisher","first-page":"23","DOI":"10.3389\/fdata.2020.00023","volume":"3","author":"C Berghoff","year":"2020","unstructured":"Christian Berghoff, Matthias Neu, and Arndt von Twickel: \u201cVulnerabilities of Connectionist AI Applications: Evaluation and Defense\u201d, Frontiers in Big Data, vol. 3, pp. 23, 2020.","journal-title":"Frontiers in Big Data"},{"key":"1805_CR4","doi-asserted-by":"crossref","unstructured":"Wojciech Samek, Gr\u00e9goire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert M\u00fcller: \u201cExplainable AI: Interpreting, Explaining and Visualizing Deep Learning\u201d, vol. 11700, Springer Nature, 2019.","DOI":"10.1007\/978-3-030-28954-6"},{"key":"1805_CR5","doi-asserted-by":"publisher","first-page":"261","DOI":"10.1016\/j.inffus.2021.07.015","volume":"77","author":"CJ Anders","year":"2022","unstructured":"Christopher J. Anders, Leander Weber, David Neumann, Wojciech Samek, Klaus-Robert M\u00fcller, and Sebastian Lapuschkin: \u201cFinding and Removing Clever Hans: Using Explanation Methods to Debug and Improve Deep Models\u201d, Information Fusion, vol. 77, pp. 261\u2013295, 2022.","journal-title":"Information Fusion"},{"key":"1805_CR6","first-page":"256","volume-title":"\u201cRobustness Testing of AI Systems: A Case Study for Traffic Sign Recognition\u201d, in Artificial Intelligence Applications and Innovations","author":"C Berghoff","year":"2021","unstructured":"Christian Berghoff, Pavol Bielik, Matthias Neu, Petar Tsankov, and Arndt von Twickel: \u201cRobustness Testing of AI Systems: A Case Study for Traffic Sign Recognition\u201d, in Artificial Intelligence Applications and Innovations, Cham, 2021, pp. 256\u2013267, Springer International Publishing."},{"key":"1805_CR7","unstructured":"Saumitra Mishra, Sanghamitra Dutta, Jason Long, and Daniele Magazzeni: \u201cA Survey on the Robustness of Feature Importance and Counterfactual Explanations\u201d, 2021."},{"key":"1805_CR8","unstructured":"Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bringmann, Alexander S. Ecker, Matthias Bethge, and Wieland Brendel: \u201cBenchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming\u201d, arXiv preprint arXiv:1907.07484, 2019."},{"key":"1805_CR9","doi-asserted-by":"publisher","first-page":"13","DOI":"10.3390\/s20133699","volume":"20","author":"T Ponn","year":"2020","unstructured":"Thomas Ponn, Thomas Kr\u00f6ger, and Frank Diermeyer: \u201cIdentification and Explanation of Challenging Conditions for Camera-Based Object Detection of Automated Vehicles\u201d, Sensors, vol. 20, no. 13, 2020.","journal-title":"Sensors"},{"key":"1805_CR10","unstructured":"Mukund Sundararajan, Ankur Taly, and Qiqi Yan: \u201cAxiomatic Attribution for Deep Networks\u201d, 2017."},{"key":"1805_CR11","unstructured":"Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi, Xavier Ricou, Rupesh Durgesh, Andrew S. Chung, Lorenz Hauswald, Viet Hoang Pham, Maximilian M\u00fchlegg, Sebastian Dorn, Tiffany Fernandez, Martin J\u00e4nicke, Sudesh Mirashi, Chiragkumar Savani, Martin Sturm, Oleksandr Vorobiov, Martin Oelker, Sebastian Garreis, and Peter Schuberth: \u201cA2D2: Audi Autonomous Driving Dataset\u201d, 2020."},{"key":"1805_CR12","series-title":"IEEE Transactions on Instrumentation and Measurement","first-page":"1","volume-title":"YOLOv4-5D: An Effective and Efficient Object Detector for Autonomous Driving","author":"Y Cai","year":"2021","unstructured":"Yingfeng Cai, Tianyu Luan, Hongbo Gao, Hai Wang, Long Chen, Yicheng Li, Miguel Angel Sotelo, and Zhixiong Li: \u201cYOLOv4-5D: An Effective and Efficient Object Detector for Autonomous Driving\u201d, IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1\u201313, 2021."},{"key":"1805_CR13","doi-asserted-by":"crossref","unstructured":"Rick Wilming, C\u00e9line Budding, Klaus-Robert M\u00fcller, and Stefan Haufe: \u201cScrutinizing XAI Using Linear Ground-Truth Data with Suppressor Variables\u201d, 2021.","DOI":"10.1007\/s10994-022-06167-y"},{"key":"1805_CR14","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1016\/j.inffus.2021.11.008","volume":"81","author":"L Arras","year":"2022","unstructured":"Leila Arras, Ahmed Osman, and Wojciech Samek: \u201cCLEVR-XAI: A Benchmark Dataset for the Ground Truth Evaluation of Neural Network Explanations\u201d, Information Fusion, vol. 81, pp. 14\u201340, 2022.","journal-title":"Information Fusion"},{"key":"1805_CR15","doi-asserted-by":"crossref","unstructured":"Leila Arras, Ahmed Osman, and Wojciech Samek: \u201cGround Truth Evaluation of Neural Network Explanations with CLEVR-XAI\u201d, CoRR, vol. abs\/2003.07258, 2021.","DOI":"10.1016\/j.inffus.2021.11.008"}],"container-title":["Datenschutz und Datensicherheit - DuD"],"original-title":[],"language":"de","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11623-023-1805-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11623-023-1805-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11623-023-1805-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,25]],"date-time":"2023-07-25T18:30:41Z","timestamp":1690309841000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11623-023-1805-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,25]]},"references-count":15,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2023,8]]}},"alternative-id":["1805"],"URL":"https:\/\/doi.org\/10.1007\/s11623-023-1805-x","relation":{},"ISSN":["1614-0702","1862-2607"],"issn-type":[{"value":"1614-0702","type":"print"},{"value":"1862-2607","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,7,25]]},"assertion":[{"value":"25 July 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}