{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,19]],"date-time":"2024-03-19T17:43:08Z","timestamp":1710870188873},"reference-count":41,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Datenschutz Datensich"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1007\/s11623-023-1746-4","type":"journal-article","created":{"date-parts":[[2023,4,14]],"date-time":"2023-04-14T10:02:17Z","timestamp":1681466537000},"page":"203-208","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Deepfakes, Dall-E & Co."],"prefix":"10.1007","volume":"47","author":[{"given":"Raphael Antonius","family":"Frick","sequence":"first","affiliation":[]},{"given":"Martin","family":"Steinebach","sequence":"additional","affiliation":[]},{"given":"Sascha","family":"Zmudzinski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,14]]},"reference":[{"key":"1746_CR1","doi-asserted-by":"crossref","unstructured":"Westerlund, M.: The emergence of deepfake technology: A review. Technology Innovation Management Review 9(11) (2019)","DOI":"10.22215\/timreview\/1282"},{"issue":"64","key":"1746_CR2","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1016\/j.inffus.2020.06.014","volume":"2020","author":"R Tolosana","year":"2020","unstructured":"Tolosana R, Vera-Rodriguez R et al (2020) Deepfakes and beyond: A Survey of face manipulation and fake detection. Inf Fusion 2020(64):131\u2013148","journal-title":"Inf Fusion"},{"key":"1746_CR3","doi-asserted-by":"crossref","unstructured":"Nguyen, T.T., Nguyen, Q.V.H. et al., Deep Learning for Deepfakes Creation and Detection: A Survey, Computer Vision and Image Understanding, Volume 223\/2022,\u00a0ISSN\u00a01077-3142 (2022)","DOI":"10.1016\/j.cviu.2022.103525"},{"issue":"3","key":"1746_CR4","doi-asserted-by":"publisher","first-page":"1659","DOI":"10.11591\/ijeecs.v28.i3.pp1659-1667","volume":"28","author":"AA Abu-Ein","year":"2022","unstructured":"Abu-Ein AA, Al-Hazaimeh OM et al (2022) Analysis of the current state of deepfake techniques-creation and detection methods. Indonesian J Electr Eng Comput Sci 28(3):1659\u20131667","journal-title":"Indonesian J Electr Eng Comput Sci"},{"key":"1746_CR5","unstructured":"Reuters: Fact check: \u201cDrunk\u201d Nancy Pelosi video is manipulated, https:\/\/www.reuters.com\/article\/uk-factcheck-nancypelosi-manipulated-idUSKCN24Z2BI (08\/2020)"},{"key":"1746_CR6","unstructured":"Winkler, P.: \u201eNancy Pelosi Video manipuliert\u201c, Neue Z\u00fcricher Zeitung (NZZ) vom 25.05.2019, https:\/\/www.nzz.ch\/international\/deep-fakes-nancy-pelosi-video-manipuliert-ld.1484614 (2019)"},{"key":"1746_CR7","doi-asserted-by":"crossref","unstructured":"Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks), International Conference on Computer Vision (2017)","DOI":"10.1109\/ICCV.2017.116"},{"key":"1746_CR8","unstructured":"Perov, I., Gao, D. et al.: Deepfacelab: A simple, flexible and extensible face swapping framework. arXiv preprint arXiv:2005.05535 (2020)"},{"key":"1746_CR9","unstructured":"deepfakes\/faceswap\u00a0(GitHub-Benutzer): \u201eFaceswap: Deepfakes Software For All\u201c. Repository: https:\/\/github.com\/deepfakes\/faceswap (2020)"},{"key":"1746_CR10","unstructured":"Wombo: WOMBO is the world\u2019s best AI-powered lip sync apphttps:\/\/www.wombo.ai\/ (letzter Aufruf 01\/2023)"},{"key":"1746_CR11","doi-asserted-by":"crossref","unstructured":"Thies, J., Zollhofer, M. et al.: Face2Face: Realtime Face Capture and Reenactment of RGB Videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2387\u20132395 (2016)","DOI":"10.1109\/CVPR.2016.262"},{"key":"1746_CR12","unstructured":"Siarohin, A., Lathuili\u00e8re, S. et al.: First Order Motion Model for Image Animation. In: Conference on Neural Information Processing Systems (NeurIPS) (12\/2019)"},{"key":"1746_CR13","unstructured":"Goodfellow, I., Pouget-Abadie, J. et al.: Generative Adversarial Nets. In: Advances in Neural Information Processing Systems, Volume 27 (2014)"},{"key":"1746_CR14","unstructured":"Karras, T., Aittala, M. et al.: Alias-Free Generative Adversarial Networks (2021)"},{"key":"1746_CR15","doi-asserted-by":"crossref","unstructured":"Lin, J., Zhang, R. et al.: Anycost GANs for Interactive Image Synthesis and Editing (2021)","DOI":"10.1109\/CVPR46437.2021.01474"},{"key":"1746_CR16","unstructured":"Adobe: \u00dcberblick \u00fcber Neural Filters\u00a0\u2013\u00a0Mit Neural Filters Kreativit\u00e4t entdecken https:\/\/helpx.adobe.com\/de\/photoshop\/using\/neural-filters.html#about-neural-ftilters (letzter Aufruf 01\/2023)"},{"key":"1746_CR17","unstructured":"Sohl-Dickstein, J., Weiss, E.A. et al.: Deep unsupervised learning using nonequilibrium thermodynamics (2015)"},{"key":"1746_CR18","unstructured":"OpenAI: DALL-E 2 \u2013 DALL-E 2 is a new AI system that can create realistic images and art from a description in natural language https:\/\/openai.com\/dall-e-2\/ (letzter Aufruf 01\/2023)"},{"key":"1746_CR19","doi-asserted-by":"crossref","unstructured":"Rombach, R., Blattmann, A. et al.: High-Resolution Image Synthesis with Latent Diffusion Models (2021)","DOI":"10.1109\/CVPR52688.2022.01042"},{"key":"1746_CR20","unstructured":"Kalchbrenner, N., Elsen, E. et al.: Efficient Neural Audio Synthesis (2018)"},{"key":"1746_CR21","unstructured":"Qian, K.: Deep generative models for speech editing. Ph.D. thesis, University of Illinoisat Urbana-Champaign (2020)"},{"key":"1746_CR22","unstructured":"Jia, Y., Zhang, Y. et al.: Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (2018)"},{"key":"1746_CR23","doi-asserted-by":"crossref","unstructured":"Thies J, Elgharib M et al (2020) Neural voice puppetry: Audio-driven facial reenactment. European Conference on Computer Vision. Springer, S 716\u2013731","DOI":"10.1007\/978-3-030-58517-4_42"},{"key":"1746_CR24","doi-asserted-by":"crossref","unstructured":"Prajwal, K.R., Mukhopadhyay, R. et al.: A lip sync expert is all you need for speech to lip generation in the wild. In: Proceedings of the 28th ACM International Conference on Multimedia. p. 484\u2013492. MM\u00a0\u201920, ACM, New\u00a0York,\u00a0NY,\u00a0USA\u00a0(2020)","DOI":"10.1145\/3394171.3413532"},{"key":"1746_CR25","doi-asserted-by":"crossref","unstructured":"Zhang, S., Yuan, J. et al.: Text2video: Text-driven talking-head video synthesis with phonetic dictionary. arXiv\u00a0preprint arXiv:2104.14631 (2021)","DOI":"10.1109\/ICASSP43922.2022.9747380"},{"key":"1746_CR26","unstructured":"Farid, H., Schindler, H.J.: Die Gefahr von Deepfakes f\u00fcr unsere Demokratie. Konrad-Adenauer-Stiftung (06\/2020)"},{"key":"1746_CR27","unstructured":"Muna, M.: Technological arming: Is deepfake the next digital weapon? Technical Report, University of California, Berkeley, USA (05\/2020)"},{"key":"1746_CR28","doi-asserted-by":"crossref","unstructured":"Vaccari, C., Chadwick, A.:\u00a0Deepfakes and disinformation: Exploring the impact of synthetic political video on deception, uncertainty, and trust in news. Social Media+\u00a0Society 6(1) (02\/2020)","DOI":"10.1177\/2056305120903408"},{"key":"1746_CR29","unstructured":"Bundesamt f\u00fcr Sicherheit in der Informationstechnik (BSI): Deepfakes\u00a0\u2013\u00a0Gefahren\u00a0und\u00a0Gegenma\u00dfnahmen https:\/\/www.bsi.bund.de\/DE\/Themen\/Unternehmen-und-Organisationen\/Informationen-und-Empfehlungen\/Kuenstliche-Intelligenz\/Deepfakes\/deepfakes_node.html (letzter Aufruf 01\/2023)"},{"key":"1746_CR30","unstructured":"Ruck, J., Mayer, C.: Recherche-Projekt: Beispiele zeigen, welche Gefahr von perfekt gef\u00e4lschten Politiker-Videos ausgehen kann, Business Insider vom 28.05.2021, https:\/\/www.businessinsider.de\/politik\/deutschland\/journalisten-projekt-recherchiert-vor-bundestagswahl-diese-gefahr-kann-von-gefaelschten-videos-ausgehen-a\/ (letzter Aufruf 01\/2023)"},{"key":"1746_CR31","unstructured":"Cook, E.: Deep fakes could have real consequences for Southeast Asia, Lowy Institute via The Interpreter vom 23.08.2019, https:\/\/www.lowyinstitute.org\/the-interpreter\/deep-fakes-could-have-real-consequences-southeast-asia (letzter Aufruf 01\/2023)"},{"key":"1746_CR32","unstructured":"Kl\u00f6\u00dfer, S.: GEFAHR DURCH DEEPFAKES \u2013 Achtung, diese manipulierten Videos von Putin und Selenskyj sind Kriegspropaganda, Stern vom 29.06.2022, https:\/\/www.stern.de\/politik\/ausland\/achtung--diese-manipulierten-videos-von-putin-und-selenskyj-sind-fake-31742680.html (letzter Aufruf 01\/2023)"},{"key":"1746_CR33","unstructured":"Damiani, J.: A Voice Deepfake Was Used To Scam A CEO Out Of $243,000, Forbes vom 03.09.2019, https:\/\/www.forbes.com\/sites\/jessedamiani\/2019\/09\/03\/a-voice-deepfake-was-used-to-scam-a-ceo-out-of-243000\/ (letzter Aufruf 01\/2023)"},{"key":"1746_CR34","unstructured":"Vincent, J.: New AI deepfake app creates nude images of women in seconds, The Verge vom 27.06.2019, https:\/\/www.theverge.com\/2019\/6\/27\/18760896\/deepfake-nude-ai-app-women-deepnude-non-consensual-pornography (letzter Aufruf 01\/2023)"},{"key":"1746_CR35","unstructured":"Simonite, T.: Most Deepfakes Are Porn, and They\u2019re Multiplying Fast, Wired vom 07.10.2019, https:\/\/www.wired.com\/story\/most-deepfakes-porn-multiplying-fast\/ (letzter Aufruf 01\/2023)"},{"key":"1746_CR36","doi-asserted-by":"crossref","unstructured":"Li, Y., Chang, M.-C. et al.: In Ictu Oculi: Exposing AI Generated Fake Face Videos by Detecting Eye Blinking (2018)","DOI":"10.1109\/WIFS.2018.8630787"},{"key":"1746_CR37","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2020.3009287","volume-title":"FakeCatcher: Detection of Synthetic Portrait Videos using Biological Signals","author":"UA Ciftci","year":"2019","unstructured":"Ciftci UA, Demir I et al (2019) FakeCatcher: Detection of Synthetic Portrait Videos using Biological Signals https:\/\/doi.org\/10.1109\/TPAMI.2020.3009287"},{"key":"1746_CR38","doi-asserted-by":"crossref","unstructured":"Agarwal, S., El-Gaaly T., Farid, H. et al.: Detecting Deep-Fake Videos from Appearance and Behavior, In: IEEE Workshop on Image Forensics and Security (2020)","DOI":"10.1109\/WIFS49906.2020.9360904"},{"key":"1746_CR39","doi-asserted-by":"crossref","unstructured":"Frick, R.A., Zmudzinski, S., Steinebach, M.: Detecting \u201cDeepFakes\u201d in H.264 Video Data Using Compression Ghost Artifacts. In: Annual Symposium on Electronic Imaging, Science and Techn8ology, pp.116\/1-116\/6 (2020)","DOI":"10.2352\/ISSN.2470-1173.2020.4.MWSF-116"},{"key":"1746_CR40","unstructured":"Steinebach, M., Bl\u00fcmer, S., Bunzel, N., Frick, R.A.: Deepfake detection assisted by background matching, Electronic Imaging\u00a0Symposium 2023 (erscheint\u00a002\/2023)."},{"issue":"4","key":"1746_CR41","first-page":"118","volume":"2020","author":"M Steinebach","year":"2020","unstructured":"Steinebach M, J\u00f6rg S et al (2020) Checking the integrity of images with signed thumbnail images. Electron Imaging Symp 2020(4):118\u2013111","journal-title":"Electron Imaging Symp"}],"container-title":["Datenschutz und Datensicherheit - DuD"],"original-title":[],"language":"de","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11623-023-1746-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11623-023-1746-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11623-023-1746-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,14]],"date-time":"2023-04-14T10:14:06Z","timestamp":1681467246000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11623-023-1746-4"}},"subtitle":["Wie KIs das Vertrauen in Multimedia-Daten auf die Probe stellen"],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":41,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,4]]}},"alternative-id":["1746"],"URL":"https:\/\/doi.org\/10.1007\/s11623-023-1746-4","relation":{},"ISSN":["1614-0702","1862-2607"],"issn-type":[{"value":"1614-0702","type":"print"},{"value":"1862-2607","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"14 April 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}