{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T15:40:08Z","timestamp":1729006808392},"reference-count":38,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T00:00:00Z","timestamp":1725926400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T00:00:00Z","timestamp":1725926400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Real-Time Image Proc"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1007\/s11554-024-01527-4","type":"journal-article","created":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T10:03:40Z","timestamp":1725962620000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A real-time visual SLAM based on semantic information and geometric information in dynamic environment"],"prefix":"10.1007","volume":"21","author":[{"given":"Hongli","family":"Sun","sequence":"first","affiliation":[]},{"given":"Qingwu","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Huiqing","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jiajing","family":"Liu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,10]]},"reference":[{"key":"1527_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TIM.2024.3470020","volume":"73","author":"Y Wang","year":"2024","unstructured":"Wang, Y., Tian, Y., Chen, J., et al.: A survey of visual SLAM in dynamic environment: the evolution from geometric to semantic approaches. IEEE Trans. Instrum. Meas. 73, 1\u201321 (2024)","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"5","key":"1527_CR2","doi-asserted-by":"publisher","first-page":"1255","DOI":"10.1109\/TRO.2017.2705103","volume":"33","author":"R Mur-Artal","year":"2017","unstructured":"Mur-Artal, R., Tard\u00f3s, J.D.: Orb-slam2: an open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot. 33(5), 1255\u20131262 (2017)","journal-title":"IEEE Trans. Robot."},{"key":"1527_CR3","doi-asserted-by":"crossref","unstructured":"Yu, C., Liu, Z., Liu, X.J., et al.: DS-SLAM: a semantic visual SLAM towards dynamic environments. In: 2018 IEEE\/RSJ international conference on intelligent robots and systems, pp. 1168\u20131174. IEEE (2018)","DOI":"10.1109\/IROS.2018.8593691"},{"issue":"4","key":"1527_CR4","doi-asserted-by":"publisher","first-page":"4076","DOI":"10.1109\/LRA.2018.2860039","volume":"3","author":"B Bescos","year":"2018","unstructured":"Bescos, B., F\u00e1cil, J.M., Civera, J., et al.: DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3(4), 4076\u20134083 (2018)","journal-title":"IEEE Robot. Autom. Lett."},{"issue":"3","key":"1527_CR5","doi-asserted-by":"publisher","first-page":"194","DOI":"10.1109\/TIV.2017.2749181","volume":"2","author":"G Bresson","year":"2017","unstructured":"Bresson, G., Alsayed, Z., Yu, L., et al.: Simultaneous localization and mapping: a survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2(3), 194\u2013220 (2017)","journal-title":"IEEE Trans. Intell. Veh."},{"key":"1527_CR6","doi-asserted-by":"crossref","unstructured":"Hussain, K., Wang, X., Omar, Z., et al.: Robotics and artificial intelligence applications in manage and control of COVID-19 pandemic. In: 2021 International Conference on Computer, Control and Robotics, pp. 66\u201369. IEEE (2021)","DOI":"10.1109\/ICCCR49711.2021.9349386"},{"key":"1527_CR7","doi-asserted-by":"crossref","unstructured":"Liu, J., Liu, R., Chen, K., et al.: Collaborative visual inertial slam for multiple smart phones. In: 2021 IEEE International Conference on Robotics and Automation, pp. 11553\u201311559. IEEE (2021)","DOI":"10.1109\/ICRA48506.2021.9561946"},{"key":"1527_CR8","doi-asserted-by":"publisher","first-page":"23772","DOI":"10.1109\/ACCESS.2021.3050617","volume":"9","author":"Y Liu","year":"2021","unstructured":"Liu, Y., Miura, J.: RDS-SLAM: real-time dynamic SLAM using semantic segmentation methods. IEEE Access. 9, 23772\u201323785 (2021)","journal-title":"IEEE Access"},{"key":"1527_CR9","doi-asserted-by":"crossref","unstructured":"Zhao, H., Shi, J., Qi, X., et al.: Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881\u20132890. IEEE (2017)","DOI":"10.1109\/CVPR.2017.660"},{"key":"1527_CR10","doi-asserted-by":"crossref","unstructured":"Howard, A., Sandler, M., Chu, G., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp. 1314\u20131324. IEEE (2019)","DOI":"10.1109\/ICCV.2019.00140"},{"key":"1527_CR11","doi-asserted-by":"crossref","unstructured":"Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 7464\u20137475. IEEE (2023)","DOI":"10.1109\/CVPR52729.2023.00721"},{"key":"1527_CR12","doi-asserted-by":"crossref","unstructured":"Zhang, T., Zhang, H., Li, Y., et al.: Flowfusion: dynamic dense rgb-d slam based on optical flow. In: 2020 IEEE International Conference on Robotics and Automation, pp. 7322\u20137328. IEEE (2020)","DOI":"10.1109\/ICRA40945.2020.9197349"},{"key":"1527_CR13","doi-asserted-by":"crossref","unstructured":"Scona, R., Jaimez, M., Petillot, Y.R., et al.: Staticfusion: background reconstruction for dense rgb-d slam in dynamic environments. In: 2018 IEEE international conference on robotics and automation, pp. 3849\u20133856. IEEE (2018)","DOI":"10.1109\/ICRA.2018.8460681"},{"key":"1527_CR14","doi-asserted-by":"crossref","unstructured":"Ji, T., Wang, C., Xie, L.: Towards real-time semantic rgb-d slam in dynamic environments. In: 2021 IEEE International Conference on Robotics and Automation, pp. 11175\u201311181. IEEE (2021)","DOI":"10.1109\/ICRA48506.2021.9561743"},{"issue":"1","key":"1527_CR15","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1109\/TPAMI.2020.3010942","volume":"44","author":"W Dai","year":"2020","unstructured":"Dai, W., Zhang, Y., Li, P., et al.: Rgb-d slam in dynamic environments using point correlations. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 373\u2013389 (2020)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"1527_CR16","doi-asserted-by":"publisher","first-page":"1745","DOI":"10.1109\/TVCG.2020.3028218","volume":"28","author":"ZJ Du","year":"2020","unstructured":"Du, Z.J., Huang, S.S., Mu, T.J., et al.: Accurate dynamic SLAM using CRF-based long-term consistency. IEEE Trans. Vis. Comput. Graph. 28(4), 1745\u20131757 (2020)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"issue":"2","key":"1527_CR17","doi-asserted-by":"publisher","first-page":"550","DOI":"10.1109\/LRA.2020.3045647","volume":"6","author":"C Wang","year":"2020","unstructured":"Wang, C., Luo, B., Zhang, Y., et al.: DymSLAM: 4D dynamic scene reconstruction based on geometrical motion segmentation. IEEE Robot. Autom. Lett. 6(2), 550\u2013557 (2020)","journal-title":"IEEE Robot. Autom. Lett."},{"issue":"10","key":"1527_CR18","doi-asserted-by":"publisher","first-page":"2445","DOI":"10.3390\/rs14102445","volume":"14","author":"C Zhang","year":"2022","unstructured":"Zhang, C., Zhang, R., Jin, S., et al.: PFD-SLAM: A new RGB-D SLAM for dynamic indoor environments based on non-prior semantic segmentation. Remote Sens. 14(10), 2445 (2022)","journal-title":"Remote Sens."},{"key":"1527_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TIM.2024.3458038","volume":"73","author":"B Zhang","year":"2024","unstructured":"Zhang, B., Ma, X., Ma, H.J., et al.: DynPL-SVO: a robust stereo visual odometry for dynamic scenes. IEEE Trans. Instrum. Meas. 73, 1\u201310 (2024)","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"1527_CR20","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2021.108225","volume":"121","author":"Y Fan","year":"2022","unstructured":"Fan, Y., Zhang, Q., Tang, Y., et al.: Blitz-SLAM: a semantic SLAM in dynamic environments. Pattern Recognit. 121, 108225 (2022)","journal-title":"Pattern Recognit."},{"issue":"3","key":"1527_CR21","doi-asserted-by":"publisher","first-page":"8209","DOI":"10.1109\/LRA.2022.3186091","volume":"7","author":"R Long","year":"2022","unstructured":"Long, R., Rauch, C., Zhang, T., et al.: RGB-D SLAM in indoor planar environments with multiple large dynamic objects. IEEE Robot. Autom. Lett. 7(3), 8209\u20138216 (2022)","journal-title":"IEEE Robot. Autom. Lett."},{"issue":"5","key":"1527_CR22","doi-asserted-by":"publisher","first-page":"172988141773566","DOI":"10.1177\/1729881417735667","volume":"14","author":"L An","year":"2017","unstructured":"An, L., Zhang, X., Gao, H., et al.: Semantic segmentation-aided visual odometry for urban autonomous driving. Int. J. Adv. Robot. Syst. 14(5), 1729881417735667 (2017)","journal-title":"Int. J. Adv. Robot. Syst."},{"key":"1527_CR23","doi-asserted-by":"crossref","unstructured":"Runz, M., Buffier, M., Agapito, L.: Maskfusion: real-time recognition, tracking and reconstruction of multiple moving objects. In: 2018 IEEE International Symposium on Mixed and Augmented Reality, pp. 10\u201320. IEEE (2018)","DOI":"10.1109\/ISMAR.2018.00024"},{"key":"1527_CR24","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., et al.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969. IEEE (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"1527_CR25","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2020.106153","volume":"90","author":"S Jin","year":"2020","unstructured":"Jin, S., Chen, L., Sun, R., et al.: A novel vSLAM framework with unsupervised semantic segmentation based on adversarial transfer learning. Appl. Soft Comput. 90, 106153 (2020)","journal-title":"Appl. Soft Comput."},{"key":"1527_CR26","first-page":"1","volume":"70","author":"J Chang","year":"2021","unstructured":"Chang, J., Dong, N., Li, D.: A real-time dynamic object segmentation framework for SLAM system in dynamic scenes. IEEE Trans. Instrum. Meas. 70, 1\u20139 (2021)","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"1527_CR27","doi-asserted-by":"crossref","unstructured":"Wu, W., Guo, L., Gao, H., et al.: YOLO-SLAM: a semantic SLAM system towards dynamic environment with geometric constraint. Neural Comput. Appl. 34, 6011\u20136026 (2022)","DOI":"10.1007\/s00521-021-06764-3"},{"key":"1527_CR28","doi-asserted-by":"publisher","first-page":"21160","DOI":"10.1109\/ACCESS.2022.3154086","volume":"10","author":"Z Hu","year":"2022","unstructured":"Hu, Z., Zhao, J., Luo, Y., et al.: Semantic SLAM based on improved DeepLabv3+ in dynamic scenarios. IEEE Access.\u00a010, 21160\u201321168 (2022)","journal-title":"IEEE Access"},{"key":"1527_CR29","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TIM.2023.3326234","volume":"72","author":"S Cheng","year":"2022","unstructured":"Cheng, S., Sun, C., Zhang, S., et al.: SG-SLAM: a real-time RGB-D visual SLAM toward dynamic scenes with semantic and geometric information. IEEE Trans. Instrum. Meas. 72, 1\u201312 (2022)","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"1527_CR30","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.119068","volume":"213","author":"S Jin","year":"2023","unstructured":"Jin, S., Dai, X., Meng, Q.: Focusing on the right regions-guided saliency prediction for visual SLAM. Expert Syst. Appl. 213, 119068 (2023)","journal-title":"Expert Syst. Appl."},{"issue":"12","key":"1527_CR31","doi-asserted-by":"publisher","first-page":"13210","DOI":"10.1109\/JSEN.2023.3270534","volume":"23","author":"J He","year":"2023","unstructured":"He, J., Li, M., Wang, Y., et al.: OVD-SLAM: an online visual SLAM for dynamic environments. IEEE Sens. J. 23(12), 13210\u201313219 (2023)","journal-title":"IEEE Sens. J."},{"issue":"5","key":"1527_CR32","doi-asserted-by":"publisher","first-page":"5653","DOI":"10.1007\/s40747-023-01031-5","volume":"9","author":"L Chen","year":"2023","unstructured":"Chen, L., Ling, Z., Gao, Y., et al.: A real-time semantic visual SLAM for dynamic environment based on deep learning and dynamic probabilistic propagation. Complex Intell. Syst. 9(5), 5653\u20135677 (2023)","journal-title":"Complex Intell. Syst."},{"key":"1527_CR33","doi-asserted-by":"crossref","unstructured":"Wang, Y., Cui, Z., Li, Y.: Distribution-consistent modal recovering for incomplete multimodal learning. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 22025\u201322034. IEEE (2023)","DOI":"10.1109\/ICCV51070.2023.02013"},{"key":"1527_CR34","unstructured":"Wang, Y., Li, Y., Cui, Z.: Incomplete multimodality-diffused emotion recognition. Adv. Neural Inf. Process. Syst. 36, 17117-17128 (2023)"},{"key":"1527_CR35","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Maire, M., Belongie, S., et al.: Microsoft coco: common objects in context. In: 13th European Conference, pp. 740\u2013755. Springer, Cham (2014)","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"1527_CR36","unstructured":"NCNN. High performance neural network inference framework. Tencent. https:\/\/github.com\/Tencent\/ncnn (2017)"},{"key":"1527_CR37","doi-asserted-by":"crossref","unstructured":"Sturm, J., Engelhard, N., Endres, F., et al.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE\/RSJ International Conference on Intelligent Robots and Systems, pp. 573\u2013580. IEEE (2012)","DOI":"10.1109\/IROS.2012.6385773"},{"key":"1527_CR38","doi-asserted-by":"crossref","unstructured":"Palazzolo, E., Behley, J., Lottes, P., et al.: ReFusion: 3D reconstruction in dynamic environments for RGB-D cameras exploiting residuals. In: 2019 IEEE\/RSJ International Conference on Intelligent Robots and Systems, pp. 7855\u20137862. IEEE (2019)","DOI":"10.1109\/IROS40897.2019.8967590"}],"container-title":["Journal of Real-Time Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11554-024-01527-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11554-024-01527-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11554-024-01527-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T15:22:50Z","timestamp":1729005770000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11554-024-01527-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9,10]]},"references-count":38,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2024,10]]}},"alternative-id":["1527"],"URL":"https:\/\/doi.org\/10.1007\/s11554-024-01527-4","relation":{},"ISSN":["1861-8200","1861-8219"],"issn-type":[{"type":"print","value":"1861-8200"},{"type":"electronic","value":"1861-8219"}],"subject":[],"published":{"date-parts":[[2024,9,10]]},"assertion":[{"value":"15 May 2024","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 July 2024","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 September 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}],"article-number":"169"}}