{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T11:54:43Z","timestamp":1726487683617},"reference-count":64,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T00:00:00Z","timestamp":1706486400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T00:00:00Z","timestamp":1706486400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"XIAN Youth Talent Support Program","award":["grant NO.959202313010"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Real-Time Image Proc"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1007\/s11554-023-01405-5","type":"journal-article","created":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T14:02:29Z","timestamp":1706536949000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["MED-YOLOv8s: a new real-time road crack, pothole, and patch detection model"],"prefix":"10.1007","volume":"21","author":[{"given":"Minghu","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Yaoheng","family":"Su","sequence":"additional","affiliation":[]},{"given":"Jiuxin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xinru","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Kaihang","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Zishen","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Man","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Zhou","family":"Guo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,29]]},"reference":[{"issue":"6","key":"1405_CR1","doi-asserted-by":"publisher","first-page":"845","DOI":"10.1016\/j.eng.2020.07.030","volume":"7","author":"Y Hou","year":"2021","unstructured":"Hou, Y., Li, Q., Zhang, C., et al.: The state-of-the-art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis. Engineering 7(6), 845\u2013856 (2021)","journal-title":"Engineering"},{"issue":"9","key":"1405_CR2","doi-asserted-by":"publisher","first-page":"873","DOI":"10.1061\/(ASCE)TE.1943-5436.0000571","volume":"139","author":"JC Pais","year":"2013","unstructured":"Pais, J.C., Amorim, S.I.R., Minhoto, M.J.C.: Impact of traffic overload on road pavement performance. J. Transp. Eng. 139(9), 873\u2013879 (2013)","journal-title":"J. Transp. Eng."},{"issue":"8","key":"1405_CR3","doi-asserted-by":"publisher","first-page":"4313","DOI":"10.1109\/JSEN.2015.2417579","volume":"15","author":"R Madli","year":"2015","unstructured":"Madli, R., Hebbar, S., Pattar, P., et al.: Automatic detection and notification of potholes and humps on roads to aid drivers. IEEE Sens. J. 15(8), 4313\u20134318 (2015)","journal-title":"IEEE Sens. J."},{"key":"1405_CR4","doi-asserted-by":"crossref","unstructured":"Gao, Y., Cao, H., CAI, W., et al.: Pixel-level road crack detection in UAV remote sensing images based on ARD-Unet. Measurement 219 (2023)","DOI":"10.1016\/j.measurement.2023.113252"},{"key":"1405_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2018\/9570465","volume":"2018","author":"M Rojo","year":"2018","unstructured":"Rojo, M., Gonzalo-Orden, H., Linares, A., et al.: Impact of a lower conservation budget on road safety indices. J. Adv. Transp. 2018, 1\u20139 (2018)","journal-title":"J. Adv. Transp."},{"key":"1405_CR6","doi-asserted-by":"crossref","unstructured":"Pan, Y., Zhang, X., Tian, J., et al.: Mapping asphalt pavement aging and condition using multiple endmember spectral mixture analysis in Beijing, China. J. Appl. Remote Sens. 11(1) (2017)","DOI":"10.1117\/1.JRS.11.016003"},{"issue":"5","key":"1405_CR7","doi-asserted-by":"publisher","first-page":"342","DOI":"10.1111\/mice.12042","volume":"29","author":"E Zalama","year":"2014","unstructured":"Zalama, E., G\u00f3mez-Garc\u00eda-Bermejo, J., Medina, R., et al.: Road crack detection using visual features extracted by Gabor filters. Comput.-Aid. Civ. Infrastruct. Eng. 29(5), 342\u2013358 (2014)","journal-title":"Comput.-Aid. Civ. Infrastruct. Eng."},{"key":"1405_CR8","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1007\/978-94-007-4566-7_16","volume":"4","author":"J Laurent","year":"2012","unstructured":"Laurent, J., H\u00e9bert, J.F., Lefebvre, D., et al.: Using 3D laser profiling sensors for the automated measurement of road surface conditions. Rilem Bookser. 4, 157\u2013167 (2012)","journal-title":"Rilem Bookser."},{"key":"1405_CR9","doi-asserted-by":"crossref","unstructured":"Gopalakrishnan, K.: Deep learning in data-driven pavement image analysis and automated distress detection: a review. Data 3(3) (2018)","DOI":"10.3390\/data3030028"},{"key":"1405_CR10","doi-asserted-by":"crossref","unstructured":"Quan, Y., Sun, J., Zhang, Y. et al.: The method of the road surface crack detection by the improved Otsu threshold. In: Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 2019","DOI":"10.1109\/ICMA.2019.8816422"},{"key":"1405_CR11","doi-asserted-by":"crossref","unstructured":"Dan, D., Dan, Q.: Automatic recognition of surface cracks in bridges based on 2D-APES and mobile machine vision. Measurement 168 (2021)","DOI":"10.1016\/j.measurement.2020.108429"},{"key":"1405_CR12","doi-asserted-by":"crossref","unstructured":"Wang, W., Li, L., Han, Y.: Crack detection in shadowed images on gray level deviations in a moving window and distance deviations between connected components. Constr. Build. Mater. 271 (2021)","DOI":"10.1016\/j.conbuildmat.2020.121885"},{"key":"1405_CR13","doi-asserted-by":"crossref","unstructured":"Zhao, H., Qin, G., Wang, X.: Improvement of canny algorithm based on pavement edge detection. In: Proceedings of the 2010 3rd International Congress on Image and Signal Processing, 2010. IEEE","DOI":"10.1109\/CISP.2010.5646923"},{"key":"1405_CR14","doi-asserted-by":"publisher","first-page":"174","DOI":"10.1016\/j.patcog.2016.11.021","volume":"66","author":"SH Hanzaei","year":"2017","unstructured":"Hanzaei, S.H., Afshar, A., Barazandeh, F.: Automatic detection and classification of the ceramic tiles\u2019 surface defects. Pattern Recognit. 66, 174\u2013189 (2017)","journal-title":"Pattern Recognit."},{"key":"1405_CR15","doi-asserted-by":"crossref","unstructured":"Li, P., Xia, H., Zhou, B., et al.: A method to improve the accuracy of pavement crack identification by combining a semantic segmentation and edge detection model. Appl. Sci. 12(9) (2022)","DOI":"10.3390\/app12094714"},{"issue":"6","key":"1405_CR16","doi-asserted-by":"publisher","first-page":"1005","DOI":"10.1016\/j.optcom.2011.10.019","volume":"285","author":"A Prasad","year":"2012","unstructured":"Prasad, A., Kumar, M., Choudhury, D.R.: Color image encoding using fractional Fourier transformation associated with wavelet transformation. Opt. Commun.Commun. 285(6), 1005\u20131009 (2012)","journal-title":"Opt. Commun.Commun."},{"issue":"7","key":"1405_CR17","doi-asserted-by":"publisher","first-page":"1335","DOI":"10.1007\/s11760-012-0363-8","volume":"8","author":"KK Sharma","year":"2012","unstructured":"Sharma, K.K., Sharma, M.: Image fusion based on image decomposition using self-fractional Fourier functions. SIViP 8(7), 1335\u20131344 (2012)","journal-title":"SIViP"},{"key":"1405_CR18","doi-asserted-by":"publisher","first-page":"29175","DOI":"10.1109\/ACCESS.2023.3243173","volume":"11","author":"S Yae","year":"2023","unstructured":"Yae, S., Ikehara, M.: Inverted residual Fourier transformation for lightweight single image deblurring. IEEE Access. 11, 29175\u201329182 (2023)","journal-title":"IEEE Access."},{"issue":"7553","key":"1405_CR19","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y Lecun","year":"2015","unstructured":"Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015)","journal-title":"Nature"},{"key":"1405_CR20","doi-asserted-by":"crossref","unstructured":"Zhao, Z.Q., Zheng, P., Xu, S.T., et al. Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 3212\u20133232 (2019)","DOI":"10.1109\/TNNLS.2018.2876865"},{"key":"1405_CR21","first-page":"580","volume":"2014","author":"R Girshick","year":"2014","unstructured":"Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Conf. Comput. Vis. Pattern Recognit. 2014, 580\u2013587 (2014)","journal-title":"IEEE Conf. Comput. Vis. Pattern Recognit."},{"key":"1405_CR22","doi-asserted-by":"crossref","unstructured":"Girshick, R.: Fast R-CNN. In: Proceedings of the International Conference on Computer Vision, 2015","DOI":"10.1109\/ICCV.2015.169"},{"issue":"6","key":"1405_CR23","doi-asserted-by":"publisher","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","volume":"39","author":"S Ren","year":"2017","unstructured":"Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.Intell. 39(6), 1137\u20131149 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell.Intell."},{"key":"1405_CR24","doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., Dollar, P., Girshick, R., et al. Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936\u2013944 (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"1405_CR25","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., et al.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"1405_CR26","first-page":"779","volume":"2016","author":"J Redmon","year":"2016","unstructured":"Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 2016, 779\u2013788 (2016)","journal-title":"IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)"},{"key":"1405_CR27","first-page":"6517","volume":"2017","author":"J Redmon","year":"2017","unstructured":"Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 2017, 6517\u20136525 (2017)","journal-title":"IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)"},{"key":"1405_CR28","unstructured":"Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv e-prints (2018)"},{"key":"1405_CR29","unstructured":"Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. (2020)"},{"key":"1405_CR30","unstructured":"Li, C., Li, L., Jiang, H., et al.: YOLOv6: a single-stage object detection framework for industrial applications. arXiv preprint http:\/\/arxiv.org\/abs\/220902976 (2022)"},{"key":"1405_CR31","doi-asserted-by":"crossref","unstructured":"Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023","DOI":"10.1109\/CVPR52729.2023.00721"},{"key":"1405_CR32","doi-asserted-by":"crossref","unstructured":"Roy, A.M., Bhaduri, J.: DenseSPH-YOLOv5: an automated damage detection model based on DenseNet and Swin-Transformer prediction head-enabled YOLOv5 with attention mechanism. Adv. Eng. Inform. 56 (2023)","DOI":"10.1016\/j.aei.2023.102007"},{"key":"1405_CR33","doi-asserted-by":"crossref","unstructured":"Wang, W., Wu, B., Yang, S., et al.: Road damage detection and classification with faster R-CNN. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big data), 2018. IEEE","DOI":"10.1109\/BigData.2018.8622354"},{"issue":"3","key":"1405_CR34","doi-asserted-by":"publisher","first-page":"2201","DOI":"10.32604\/cmc.2020.011191","volume":"65","author":"Q Chen","year":"2020","unstructured":"Chen, Q., Gan, X., Huang, W., et al.: Road damage detection and classification using mask R-CNN with DenseNet backbone. Comput. Mater. Continua 65(3), 2201\u20132215 (2020)","journal-title":"Comput. Mater. Continua"},{"key":"1405_CR35","unstructured":"Haciefendio\u011flu, K., Ba\u015fa\u011fa, H.B.: Concrete road crack detection using deep learning-based faster R-CNN method. Iran. J. Sci. Technol. Trans. Civ. Eng. 1\u201313 (2022)"},{"key":"1405_CR36","doi-asserted-by":"crossref","unstructured":"Liu, Z., Yeoh, J.K.W., Gu, X., et al.: Automatic pixel-level detection of vertical cracks in asphalt pavement based on GPR investigation and improved mask R-CNN. Autom. Constr. 146 (2023)","DOI":"10.1016\/j.autcon.2022.104689"},{"key":"1405_CR37","doi-asserted-by":"crossref","unstructured":"Shen, T., Nie, M.: Pavement damage detection based on cascade R-CNN. In: Proceedings of the Proceedings of the 4th International Conference on Computer Science and Application Engineering, 2020","DOI":"10.1145\/3424978.3425139"},{"key":"1405_CR38","doi-asserted-by":"crossref","unstructured":"Li, S., Huang, Y.: Damage detection algorithm based on faster-RCNN. In: Proceedings of the 2023 5th International Conference on Electronics and Communication, Network and Computer Technology (ECNCT), 2023. IEEE","DOI":"10.1109\/ECNCT59757.2023.10280967"},{"key":"1405_CR39","doi-asserted-by":"crossref","unstructured":"Ding, W., Zhao, X., Zhu, B., et al.: An ensemble of one-stage and two-stage detectors approach for road damage detection. In: Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), 2022 [C]. IEEE","DOI":"10.1109\/BigData55660.2022.10021000"},{"key":"1405_CR40","doi-asserted-by":"publisher","first-page":"132839","DOI":"10.1016\/j.conbuildmat.2023.132839","volume":"400","author":"TS Tran","year":"2023","unstructured":"Tran, T.S., Nguyen, S.D., Lee, H.J., et al.: Advanced crack detection and segmentation on bridge decks using deep learning. Constr. Build. Mater. 400, 132839 (2023)","journal-title":"Constr. Build. Mater."},{"issue":"9","key":"1405_CR41","doi-asserted-by":"publisher","first-page":"452","DOI":"10.3390\/a16090452","volume":"16","author":"AA Sami","year":"2023","unstructured":"Sami, A.A., Sakib, S., Deb, K., et al.: Improved YOLOv5-based real-time road pavement damage detection in road infrastructure management. Algorithms 16(9), 452 (2023)","journal-title":"Algorithms"},{"issue":"20","key":"1405_CR42","doi-asserted-by":"publisher","first-page":"8361","DOI":"10.3390\/s23208361","volume":"23","author":"X Wang","year":"2023","unstructured":"Wang, X., Gao, H., Jia, Z., et al.: BL-YOLOv8: an improved road defect detection model based on YOLOv8. Sensors 23(20), 8361 (2023)","journal-title":"Sensors"},{"key":"1405_CR43","doi-asserted-by":"crossref","unstructured":"Alfarrarjeh, A., Trivedi, D., Kim, S.H., et al.: A deep learning approach for road damage detection from smartphone images. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), 2018. IEEE","DOI":"10.1109\/BigData.2018.8621899"},{"issue":"1","key":"1405_CR44","doi-asserted-by":"publisher","first-page":"15523","DOI":"10.1038\/s41598-022-19674-8","volume":"12","author":"G Guo","year":"2022","unstructured":"Guo, G., Zhang, Z.: Road damage detection algorithm for improved YOLOv5. Sci. Rep. 12(1), 15523 (2022)","journal-title":"Sci. Rep."},{"key":"1405_CR45","doi-asserted-by":"crossref","unstructured":"Inam, H., Islam, N.U., Akram, M.U., et al.: Smart and automated infrastructure management: a deep learning approach for crack detection in bridge images. Sustainability 15(3) (2023)","DOI":"10.3390\/su15031866"},{"key":"1405_CR46","doi-asserted-by":"crossref","unstructured":"Ren, M., Zhang, X., Chen, X., et al.: YOLOv5s-M: a deep learning network model for road pavement damage detection from urban street-view imagery. Int. J. Appl. Earth Observ. Geoinf. 120 (2023)","DOI":"10.1016\/j.jag.2023.103335"},{"key":"1405_CR47","doi-asserted-by":"crossref","unstructured":"Du, Y., Zhong, S., Fang, H., et al.: Modeling automatic pavement crack object detection and pixel-level segmentation. Autom. Constr. 150 (2023)","DOI":"10.1016\/j.autcon.2023.104840"},{"key":"1405_CR48","doi-asserted-by":"crossref","unstructured":"Arya, D., Maeda, H., Ghosh, S.K., et al.: Crowdsensing-based road damage detection challenge (CRDDC\u20192022). In: Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), 2022. IEEE","DOI":"10.1109\/BigData55660.2022.10021040"},{"key":"1405_CR49","unstructured":"Zhang, H., Cisse, M., Dauphin, Y.N., et al.: mixup: beyond empirical risk minimization. arXiv preprint http:\/\/arxiv.org\/abs\/171009412 (2017)"},{"key":"1405_CR50","unstructured":"Terven, J., Cordova-Esparza, D.: A comprehensive review of YOLO: from YOLOv1 and beyond. arXiv 2023. arXiv preprint http:\/\/arxiv.org\/abs\/230400501"},{"key":"1405_CR51","doi-asserted-by":"crossref","unstructured":"Koonce, B., Koonce, B.: MobileNetV3. In: Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization, pp. 125\u201344 (2021)","DOI":"10.1007\/978-1-4842-6168-2_11"},{"key":"1405_CR52","unstructured":"Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: Proceedings of the International Conference on Machine Learning, 2021. PMLR"},{"key":"1405_CR53","doi-asserted-by":"crossref","unstructured":"Koonce, B., Koonce, B.: EfficientNet. In: Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization, pp. 109\u201323 (2021)","DOI":"10.1007\/978-1-4842-6168-2_10"},{"key":"1405_CR54","unstructured":"Howard, A.G., Zhu, M., Chen, B., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint http:\/\/arxiv.org\/abs\/170404861 (2017)"},{"key":"1405_CR55","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., et al.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018","DOI":"10.1109\/CVPR.2018.00474"},{"key":"1405_CR56","doi-asserted-by":"crossref","unstructured":"Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017","DOI":"10.1109\/CVPR.2017.195"},{"key":"1405_CR57","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018","DOI":"10.1109\/CVPR.2018.00745"},{"key":"1405_CR58","doi-asserted-by":"crossref","unstructured":"Wang, Q., Wu, B., Zhu, P., et al.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020","DOI":"10.1109\/CVPR42600.2020.01155"},{"key":"1405_CR59","doi-asserted-by":"crossref","unstructured":"Sun, P., Zhang, R., Jiang, Y., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021","DOI":"10.1109\/CVPR46437.2021.01422"},{"issue":"16","key":"1405_CR60","doi-asserted-by":"publisher","first-page":"7190","DOI":"10.3390\/s23167190","volume":"23","author":"G Wang","year":"2023","unstructured":"Wang, G., Chen, Y., An, P., et al.: UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios. Sensors 23(16), 7190 (2023)","journal-title":"Sensors"},{"issue":"16","key":"1405_CR61","doi-asserted-by":"publisher","first-page":"9211","DOI":"10.3390\/app13169211","volume":"13","author":"X Zheng","year":"2023","unstructured":"Zheng, X., Qian, S., Wei, S., et al.: The combination of transformer and you only look once for automatic concrete pavement crack detection. Appl. Sci. 13(16), 9211 (2023)","journal-title":"Appl. Sci."},{"issue":"19","key":"1405_CR62","doi-asserted-by":"publisher","first-page":"10583","DOI":"10.3390\/app131910583","volume":"13","author":"Y Wu","year":"2023","unstructured":"Wu, Y., Han, Q., Jin, Q., et al.: LCA-YOLOv8-Seg: an improved lightweight YOLOv8-Seg for real-time pixel-level crack detection of dams and bridges. Appl. Sci. 13(19), 10583 (2023)","journal-title":"Appl. Sci."},{"issue":"4","key":"1405_CR63","doi-asserted-by":"publisher","first-page":"254","DOI":"10.3390\/d14040254","volume":"14","author":"L Yang","year":"2022","unstructured":"Yang, L., Yan, J., Li, H., et al.: Real-time classification of invasive plant seeds based on improved YOLOv5 with attention mechanism. Diversity 14(4), 254 (2022)","journal-title":"Diversity"},{"key":"1405_CR64","doi-asserted-by":"publisher","first-page":"102211","DOI":"10.1016\/j.ecoinf.2023.102211","volume":"77","author":"Y Huang","year":"2023","unstructured":"Huang, Y., He, J., Liu, G., et al.: YOLO-EP: a detection algorithm to detect eggs of Pomacea canaliculata in rice fields. Ecol. Inform. 77, 102211 (2023)","journal-title":"Ecol. Inform."}],"container-title":["Journal of Real-Time Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11554-023-01405-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11554-023-01405-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11554-023-01405-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,5]],"date-time":"2024-04-05T12:24:27Z","timestamp":1712319867000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11554-023-01405-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1,29]]},"references-count":64,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2024,4]]}},"alternative-id":["1405"],"URL":"https:\/\/doi.org\/10.1007\/s11554-023-01405-5","relation":{},"ISSN":["1861-8200","1861-8219"],"issn-type":[{"value":"1861-8200","type":"print"},{"value":"1861-8219","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,1,29]]},"assertion":[{"value":"14 October 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 December 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 January 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}],"article-number":"26"}}