{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T07:09:03Z","timestamp":1724915343825},"reference-count":41,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["No.42130716"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["No.61632009"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Real-Time Image Proc"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1007\/s11554-023-01281-z","type":"journal-article","created":{"date-parts":[[2023,2,10]],"date-time":"2023-02-10T05:31:24Z","timestamp":1676007084000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["An improved lightweight and real-time YOLOv5 network for detection of surface defects on indocalamus leaves"],"prefix":"10.1007","volume":"20","author":[{"given":"Zhe","family":"Tang","sequence":"first","affiliation":[]},{"given":"Lin","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Fang","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Huarong","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,9]]},"reference":[{"issue":"5","key":"1281_CR1","doi-asserted-by":"publisher","first-page":"394","DOI":"10.1556\/JPC.24.2011.5.6","volume":"24","author":"J Cui","year":"2011","unstructured":"Cui, J., Yue, Y., Tang, F., Wang, J.: Hptlc analysis of the flavonoids in eight species of indocalamus leaves. J. Planar Chromatogr.-Mod. TLC 24(5), 394\u2013399 (2011)","journal-title":"J. Planar Chromatogr.-Mod. TLC"},{"issue":"1","key":"1281_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13002-019-0339-7","volume":"15","author":"F Lin","year":"2019","unstructured":"Lin, F., Luo, B., Long, B., Long, C.: Plant leaves for wrapping zongzi in china: an ethnobotanical study. J. Ethnobiol. Ethnomed. 15(1), 1\u201316 (2019)","journal-title":"J. Ethnobiol. Ethnomed."},{"key":"1281_CR3","doi-asserted-by":"publisher","first-page":"326","DOI":"10.1016\/j.foodres.2014.03.012","volume":"62","author":"B Zhang","year":"2014","unstructured":"Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., Liu, C.: Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Res. Int. 62, 326\u2013343 (2014)","journal-title":"Food Res. Int."},{"key":"1281_CR4","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2021.109130","volume":"175","author":"M Zhang","year":"2021","unstructured":"Zhang, M., Shi, H., Zhang, Y., Yu, Y., Zhou, M.: Deep learning-based damage detection of mining conveyor belt. Measurement 175, 109130 (2021)","journal-title":"Measurement"},{"issue":"2","key":"1281_CR5","doi-asserted-by":"publisher","first-page":"623","DOI":"10.13031\/2013.24363","volume":"51","author":"Q Chen","year":"2008","unstructured":"Chen, Q., Zhao, J., Cai, J.: Identification of tea varieties using computer vision. Trans. ASABE 51(2), 623\u2013628 (2008)","journal-title":"Trans. ASABE"},{"issue":"7","key":"1281_CR6","doi-asserted-by":"publisher","first-page":"651","DOI":"10.3390\/agriculture11070651","volume":"11","author":"S Zhao","year":"2021","unstructured":"Zhao, S., Peng, Y., Liu, J., Wu, S.: Tomato leaf disease diagnosis based on improved convolution neural network by attention module. Agriculture 11(7), 651 (2021)","journal-title":"Agriculture"},{"issue":"6","key":"1281_CR7","doi-asserted-by":"publisher","first-page":"887","DOI":"10.3390\/agriculture12060887","volume":"12","author":"J Lin","year":"2022","unstructured":"Lin, J., Chen, X., Pan, R., Cao, T., Cai, J., Chen, Y., Peng, X., Cernava, T., Zhang, X.: Grapenet: a lightweight convolutional neural network model for identification of grape leaf diseases. Agriculture 12(6), 887 (2022)","journal-title":"Agriculture"},{"issue":"3","key":"1281_CR8","doi-asserted-by":"publisher","first-page":"222","DOI":"10.3390\/agriculture11030222","volume":"11","author":"TM Shah","year":"2021","unstructured":"Shah, T.M., Nasika, D.P.B., Otterpohl, R.: Plant and weed identifier robot as an agroecological tool using artificial neural networks for image identification. Agriculture 11(3), 222 (2021)","journal-title":"Agriculture"},{"issue":"9","key":"1281_CR9","doi-asserted-by":"publisher","first-page":"863","DOI":"10.3390\/agriculture11090863","volume":"11","author":"C Wang","year":"2021","unstructured":"Wang, C., Xiao, Z.: Potato surface defect detection based on deep transfer learning. Agriculture 11(9), 863 (2021)","journal-title":"Agriculture"},{"issue":"23","key":"1281_CR10","doi-asserted-by":"publisher","first-page":"6993","DOI":"10.3390\/s20236993","volume":"20","author":"H Zhou","year":"2020","unstructured":"Zhou, H., Zhuang, Z., Liu, Y., Liu, Y., Zhang, X.: Defect classification of green plums based on deep learning. Sensors 20(23), 6993 (2020)","journal-title":"Sensors"},{"issue":"3","key":"1281_CR11","doi-asserted-by":"publisher","first-page":"687","DOI":"10.1007\/s11554-022-01215-1","volume":"19","author":"H Pan","year":"2022","unstructured":"Pan, H., Shi, Y., Lei, X., Wang, Z., Xin, F.: Fast identification model for coal and gangue based on the improved tiny yolo v3. J. Real-Time Image Proc. 19(3), 687\u2013701 (2022)","journal-title":"J. Real-Time Image Proc."},{"key":"1281_CR12","doi-asserted-by":"crossref","unstructured":"Xu, Y., Chen, Q., Kong, S., Xing, L., Wang, Q., Cong, X., Zhou, Y.: Real-time object detection method of melon leaf diseases under complex background in greenhouse. J. Real-Time Image Process. 1\u201311 (2022)","DOI":"10.1007\/s11554-022-01239-7"},{"key":"1281_CR13","doi-asserted-by":"crossref","unstructured":"Liu, C., Wang, X., Wu, Q., Jiang, J.: Lightweight target detection algorithm based on yolov4. J. Real-Time Image Process. 1\u201315 (2022)","DOI":"10.1007\/s11554-022-01251-x"},{"key":"1281_CR14","doi-asserted-by":"publisher","first-page":"417","DOI":"10.1016\/j.compag.2019.01.012","volume":"157","author":"Y Tian","year":"2019","unstructured":"Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., Liang, Z.: Apple detection during different growth stages in orchards using the improved yolo-v3 model. Comput. Electron. Agric. 157, 417\u2013426 (2019)","journal-title":"Comput. Electron. Agric."},{"key":"1281_CR15","doi-asserted-by":"publisher","DOI":"10.1016\/j.compag.2022.107194","volume":"199","author":"Q Wang","year":"2022","unstructured":"Wang, Q., Cheng, M., Huang, S., Cai, Z., Zhang, J., Yuan, H.: A deep learning approach incorporating yolo v5 and attention mechanisms for field realtime detection of the invasive weed solanum rostratum dunal seedlings. Comput. Electron. Agric. 199, 107194 (2022)","journal-title":"Comput. Electron. Agric."},{"key":"1281_CR16","unstructured":"Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:18040x (2018)"},{"key":"1281_CR17","unstructured":"Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)"},{"key":"1281_CR18","doi-asserted-by":"publisher","unstructured":"Jocher, G.: ultralytics\/yolov5: v6.0 -yolov5n \u2018nano\u2019 models, roboflow integration, tensorflow export, opencv dnn support. https:\/\/doi.org\/10.5281\/zenodo.5563715 (2021)","DOI":"10.5281\/zenodo.5563715"},{"key":"1281_CR19","doi-asserted-by":"publisher","first-page":"4587","DOI":"10.1109\/TIP.2021.3072811","volume":"30","author":"Z Li","year":"2021","unstructured":"Li, Z., Lang, C., Liew, J.H., Li, Y., Hou, Q., Feng, J.: Cross-layer feature pyramid network for salient object detection. IEEE Trans. Image Process. 30, 4587\u20134598 (2021)","journal-title":"IEEE Trans. Image Process."},{"key":"1281_CR20","doi-asserted-by":"crossref","unstructured":"Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 8759\u20138768 (2018)","DOI":"10.1109\/CVPR.2018.00913"},{"key":"1281_CR21","unstructured":"Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)"},{"key":"1281_CR22","doi-asserted-by":"crossref","unstructured":"Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 764\u2013773 (2017)","DOI":"10.1109\/ICCV.2017.89"},{"key":"1281_CR23","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster rcnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)"},{"key":"1281_CR24","doi-asserted-by":"crossref","unstructured":"Cai, Z., Vasconcelos, N.: Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154\u20136162 (2018)","DOI":"10.1109\/CVPR.2018.00644"},{"key":"1281_CR25","doi-asserted-by":"crossref","unstructured":"Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, CY., Berg, AC.: Ssd: single shot multibox detector. In: European Conference on Computer Vision. Springer, pp. 21\u201337 (2016)","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"1281_CR26","doi-asserted-by":"crossref","unstructured":"Liu, H., Liu, F., Fan, X., Huang, D.: Polarized self-attention: towards high-quality pixel-wise regression. arXiv preprint arXiv:2107.00782 (2021)","DOI":"10.1016\/j.neucom.2022.07.054"},{"key":"1281_CR27","doi-asserted-by":"crossref","unstructured":"Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11030\u201311039 (2020)","DOI":"10.1109\/CVPR42600.2020.01104"},{"key":"1281_CR28","doi-asserted-by":"crossref","unstructured":"Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 13713\u201313722 (2021)","DOI":"10.1109\/CVPR46437.2021.01350"},{"key":"1281_CR29","doi-asserted-by":"crossref","unstructured":"Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B.,Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE\/CVF International Conferen on Computer Vision, pp. 1314\u20131324 (2019)","DOI":"10.1109\/ICCV.2019.00140"},{"key":"1281_CR30","unstructured":"Liu, Y., Shao, Z., Teng, Y., Hoffmann, N.: Nam: normalization-based attention module. arXiv preprint arXiv:2111.12419 (2021)"},{"key":"1281_CR31","doi-asserted-by":"crossref","unstructured":"Ma, N., Zhang, X., Liu, M., Sun, J.: Activate or not: learning customized activation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 8032\u20138042 (2021)","DOI":"10.1109\/CVPR46437.2021.00794"},{"key":"1281_CR32","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Doll\u00e1r, P., Zitnick, C.L.: Microsoftcoco: common objects in context. In: European Conference on Computer Vision, Springer, pp. 740\u2013755 (2014)","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"1281_CR33","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510\u20134520 (2018)","DOI":"10.1109\/CVPR.2018.00474"},{"key":"1281_CR34","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"1281_CR35","unstructured":"Wang, C.Y., Yeh, I. H., Liao, H. Y. M.: You only learn one representation: unified network for multiple tasks. arXiv preprint arXiv:2105.04206 (2021)"},{"key":"1281_CR36","unstructured":"Liu, S., Huang, D., Wang, Y.: Learning spatial fusion for single-shot object detection. arXiv preprint arXiv:1911.09516 (2019)"},{"key":"1281_CR37","doi-asserted-by":"crossref","unstructured":"Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)","DOI":"10.1109\/CVPR52729.2023.00721"},{"key":"1281_CR38","doi-asserted-by":"crossref","unstructured":"Adarsh, P., Rathi, P., Kumar, M.: Yolo v3-tiny: object detection and recognition using one stage improved model. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), IEEE, pp. 687\u2013694 (2020)","DOI":"10.1109\/ICACCS48705.2020.9074315"},{"key":"1281_CR39","unstructured":"pogg.: Yolov5-lite. https:\/\/github.com\/ppogg\/YOLOv5-Lite (2021)"},{"key":"1281_CR40","doi-asserted-by":"crossref","unstructured":"Hong, J., Fulton, M., Sattar, J.: A generative approach towards improved robotic detection of marine litter. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 10525\u201310531 (2020)","DOI":"10.1109\/ICRA40945.2020.9197575"},{"key":"1281_CR41","doi-asserted-by":"crossref","unstructured":"Loezer, L., Enembreck, F., Barddal, J.P., de Souza, Britto. Jr. A.: Cost-sensitive learning for imbalanced data streams. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 498\u2013504(2020)","DOI":"10.1145\/3341105.3373949"}],"container-title":["Journal of Real-Time Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11554-023-01281-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11554-023-01281-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11554-023-01281-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,5]],"date-time":"2024-08-05T14:29:50Z","timestamp":1722868190000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11554-023-01281-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2]]},"references-count":41,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,2]]}},"alternative-id":["1281"],"URL":"https:\/\/doi.org\/10.1007\/s11554-023-01281-z","relation":{},"ISSN":["1861-8200","1861-8219"],"issn-type":[{"type":"print","value":"1861-8200"},{"type":"electronic","value":"1861-8219"}],"subject":[],"published":{"date-parts":[[2023,2]]},"assertion":[{"value":"6 September 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 December 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 February 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"All authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This paper does not contain any unethical studies on humans or animals.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Human rights and animal participants"}}],"article-number":"14"}}