{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T07:12:11Z","timestamp":1724915531872},"reference-count":26,"publisher":"Springer Science and Business Media LLC","issue":"9","license":[{"start":{"date-parts":[[2021,6,7]],"date-time":"2021-06-07T00:00:00Z","timestamp":1623024000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,6,7]],"date-time":"2021-06-07T00:00:00Z","timestamp":1623024000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J CARS"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1007\/s11548-021-02414-0","type":"journal-article","created":{"date-parts":[[2021,6,7]],"date-time":"2021-06-07T12:10:09Z","timestamp":1623067809000},"page":"1537-1548","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":31,"title":["Liver disease classification from ultrasound using multi-scale CNN"],"prefix":"10.1007","volume":"16","author":[{"given":"Hui","family":"Che","sequence":"first","affiliation":[]},{"given":"Lloyd G.","family":"Brown","sequence":"additional","affiliation":[]},{"given":"David J.","family":"Foran","sequence":"additional","affiliation":[]},{"given":"John L.","family":"Nosher","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3232-8193","authenticated-orcid":false,"given":"Ilker","family":"Hacihaliloglu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,6,7]]},"reference":[{"issue":"14","key":"2414_CR1","doi-asserted-by":"publisher","first-page":"1341","DOI":"10.1056\/NEJMra0912063","volume":"363","author":"G Targher","year":"2010","unstructured":"Targher G, Day CP, Bonora E (2010) Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. New England J Med 363(14):1341\u20131350","journal-title":"New England J Med"},{"issue":"2","key":"2414_CR2","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1002\/hep4.1134","volume":"2","author":"P Nasr","year":"2018","unstructured":"Nasr P, Ignatova S, Kechagias S, Ekstedt M (2018) Natural history of nonalcoholic fatty liver disease: a prospective follow-up study with serial biopsies. Hepatol Commun 2(2):199\u2013210","journal-title":"Hepatol Commun"},{"issue":"8","key":"2414_CR3","doi-asserted-by":"publisher","first-page":"756","DOI":"10.1056\/NEJMra1610570","volume":"377","author":"EB Tapper","year":"2017","unstructured":"Tapper EB, Lok ASF (2017) Use of liver imaging and biopsy in clinical practice. New England J Med 377(8):756\u2013768","journal-title":"New England J Med"},{"issue":"8","key":"2414_CR4","doi-asserted-by":"publisher","first-page":"530","DOI":"10.4254\/wjh.v10.i8.530","volume":"10","author":"Q Li","year":"2018","unstructured":"Li Q, Dhyani M, Grajo JR, Sirlin C, Samir AE (2018) Current status of imaging in nonalcoholic fatty liver disease. World J Hepatol 10(8):530","journal-title":"World J Hepatol"},{"issue":"22","key":"2414_CR5","doi-asserted-by":"publisher","first-page":"6821","DOI":"10.3748\/wjg.v20.i22.6821","volume":"20","author":"N Khov","year":"2014","unstructured":"Khov N, Sharma A, Riley TR (2014) Bedside ultrasound in the diagnosis of nonalcoholic fatty liver disease. World J Gastroenterol 20(22):6821","journal-title":"World J Gastroenterol"},{"key":"2414_CR6","doi-asserted-by":"publisher","first-page":"250","DOI":"10.1016\/j.compbiomed.2016.10.022","volume":"79","author":"UR Acharya","year":"2016","unstructured":"Acharya UR, Raghavendra U, Fujita H, Hagiwara Y, Koh JE, Hong TJ, Sudarshan VK, Vijayananthan A, Yeong CH, Gudigar A et al (2016) Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med 79:250\u2013258","journal-title":"Comput Biol Med"},{"issue":"6","key":"2414_CR7","doi-asserted-by":"publisher","first-page":"W320","DOI":"10.2214\/AJR.07.2123","volume":"189","author":"S Strauss","year":"2007","unstructured":"Strauss S, Gavish E, Gottlieb P, Katsnelson L (2007) Interobserver and intraobserver variability in the sonographic assessment of fatty liver. Am J Roentgenol 189(6):W320\u2013W323","journal-title":"Am J Roentgenol"},{"key":"2414_CR8","doi-asserted-by":"publisher","first-page":"763","DOI":"10.1016\/j.protcy.2012.09.084","volume":"5","author":"A Andrade","year":"2012","unstructured":"Andrade A, Silva JS, Santos J, Belo-Soares P (2012) Classifier approaches for liver steatosis using ultrasound images. Procedia Technol 5:763\u2013770","journal-title":"Procedia Technol"},{"key":"2414_CR9","first-page":"5804","volume":"5","author":"D Meng","year":"2017","unstructured":"Meng D, Zhang L, Cao G, Cao W, Zhang G, Hu B (2017) Liver fibrosis classification based on transfer learning and fcnet for ultrasound images. IEEE Access 5:5804\u20135810","journal-title":"IEEE Access"},{"issue":"1","key":"2414_CR10","doi-asserted-by":"publisher","first-page":"149","DOI":"10.3390\/s17010149","volume":"17","author":"X Liu","year":"2017","unstructured":"Liu X, Song J, Wang S, Zhao J, Chen Y (2017) Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification. Sensors 17(1):149","journal-title":"Sensors"},{"key":"2414_CR11","doi-asserted-by":"crossref","unstructured":"Reddy DS, Bharath R, Rajalakshmi P (2018) Classification of nonalcoholic fatty liver texture using convolution neural networks. In: 2018 IEEE 20th international conference on e-health networking, applications and services (Healthcom). IEEE, pp 1\u20135","DOI":"10.1109\/HealthCom.2018.8531193"},{"key":"2414_CR12","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1016\/j.cmpb.2017.12.016","volume":"155","author":"M Biswas","year":"2018","unstructured":"Biswas M, Kuppili V, Edla DR, Suri HS, Saba L, Marinhoe RT, Sanches JM, Suri JS (2018) Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput Methods Prog Biomed 155:165\u2013177","journal-title":"Comput Methods Prog Biomed"},{"issue":"12","key":"2414_CR13","doi-asserted-by":"publisher","first-page":"1895","DOI":"10.1007\/s11548-018-1843-2","volume":"13","author":"M Byra","year":"2018","unstructured":"Byra M, Styczynski G, Szmigielski C, Kalinowski P, Micha\u0142owski \u0141, Paluszkiewicz R, Ziarkiewicz-Wr\u00f3blewska B, Zieniewicz K, Sobieraj P, Nowicki A (2018) Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int J Comput Assist Radiol Surg 13(12):1895\u20131903","journal-title":"Int J Comput Assist Radiol Surg"},{"key":"2414_CR14","doi-asserted-by":"crossref","unstructured":"Saba L, Dey N, Ashour AS, Samanta S, Nath SS, Chakraborty S, Sanches J, Kumar D, Marinho R, Suri JS (2016) Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm. Comput Methods Prog Biomed 130:118\u2013134","DOI":"10.1016\/j.cmpb.2016.03.016"},{"key":"2414_CR15","doi-asserted-by":"crossref","unstructured":"Kuppili V, Biswas M, Sreekumar A, Suri HS, Saba L, Edla DR, Marinhoe RT, Sanches JM, Suri JS (2017) Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization. J Med Syst 41(10):1\u201320","DOI":"10.1007\/s10916-017-0797-1"},{"key":"2414_CR16","doi-asserted-by":"crossref","unstructured":"Qi X, Brown LG, Foran DJ, Nosher J, Hacihaliloglu I (2020) Chest x-ray image phase features for improved diagnosis of covid-19 using convolutional neural network. Int J Comput Assist Radiol Surg 1\u201310","DOI":"10.1007\/s11548-020-02305-w"},{"key":"2414_CR17","doi-asserted-by":"crossref","unstructured":"Mwikirize C, Nosher JL, Hacihaliloglu I (2019) Single shot needle tip localization in 2d ultrasound. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 637\u2013645","DOI":"10.1007\/978-3-030-32254-0_71"},{"issue":"5","key":"2414_CR18","doi-asserted-by":"publisher","first-page":"775","DOI":"10.1007\/s11548-019-01934-0","volume":"14","author":"AZ Alsinan","year":"2019","unstructured":"Alsinan AZ, Patel VM, Hacihaliloglu I (2019) Automatic segmentation of bone surfaces from ultrasound using a filter-layer-guided cnn. Int J Comput Assist Radiol Surg 14(5):775\u2013783","journal-title":"Int J Comput Assist Radiol Surg"},{"issue":"6","key":"2414_CR19","doi-asserted-by":"publisher","first-page":"951","DOI":"10.1007\/s11548-017-1556-y","volume":"12","author":"I Hacihaliloglu","year":"2017","unstructured":"Hacihaliloglu I (2017) Enhancement of bone shadow region using local phase-based ultrasound transmission maps. Int J Comput Assist Radiol Surg 12(6):951\u2013960","journal-title":"Int J Comput Assist Radiol Surg"},{"issue":"3","key":"2414_CR20","doi-asserted-by":"publisher","first-page":"363","DOI":"10.1007\/s11548-017-1698-y","volume":"13","author":"C Mwikirize","year":"2018","unstructured":"Mwikirize C, Nosher JL, Hacihaliloglu I (2018) Signal attenuation maps for needle enhancement and localization in 2d ultrasound. Int J Comput Assist Radiol Surg 13(3):363\u2013374","journal-title":"Int J Comput Assist Radiol Surg"},{"issue":"12","key":"2414_CR21","doi-asserted-by":"publisher","first-page":"3136","DOI":"10.1109\/78.969520","volume":"49","author":"M Felsberg","year":"2001","unstructured":"Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Sig Process 49(12):3136\u20133144","journal-title":"IEEE Trans Sig Process"},{"issue":"10","key":"2414_CR22","doi-asserted-by":"publisher","first-page":"3209","DOI":"10.1016\/j.patcog.2014.03.029","volume":"47","author":"A Belaid","year":"2014","unstructured":"Belaid A, Boukerroui D (2014) A new generalised $$\\alpha $$ scale spaces quadrature filters. Pattern Recogn 47(10):3209\u20133224","journal-title":"Pattern Recogn"},{"key":"2414_CR23","doi-asserted-by":"publisher","first-page":"959","DOI":"10.1109\/TPAMI.2003.1217601","volume":"8","author":"G Loy","year":"2003","unstructured":"Loy G, Zelinsky A (2003) Fast radial symmetry for detecting points of interest. IEEE Trans Patt Anal Mach Intell 8:959\u2013973","journal-title":"IEEE Trans Patt Anal Mach Intell"},{"key":"2414_CR24","doi-asserted-by":"crossref","unstructured":"Liu R, Wang F, Yang B, Qin SJ (2019) Multi-scale kernel based residual convolutional neural network for motor fault diagnosis under non-stationary conditions. IEEE Trans Indus Inform","DOI":"10.1109\/TII.2019.2941868"},{"key":"2414_CR25","doi-asserted-by":"crossref","unstructured":"Nowak E, Jurie F, Triggs B (2006) Sampling strategies for bag-of-features image classification. In: European conference on computer vision. Springer, pp 490\u2013503","DOI":"10.1007\/11744085_38"},{"key":"2414_CR26","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"}],"container-title":["International Journal of Computer Assisted Radiology and Surgery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11548-021-02414-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11548-021-02414-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11548-021-02414-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T05:05:18Z","timestamp":1672376718000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11548-021-02414-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,7]]},"references-count":26,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2021,9]]}},"alternative-id":["2414"],"URL":"https:\/\/doi.org\/10.1007\/s11548-021-02414-0","relation":{},"ISSN":["1861-6410","1861-6429"],"issn-type":[{"value":"1861-6410","type":"print"},{"value":"1861-6429","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,6,7]]},"assertion":[{"value":"22 January 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 May 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 June 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"The article uses open source dataset.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}}]}}