{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,4]],"date-time":"2024-01-04T05:21:57Z","timestamp":1704345717468},"reference-count":30,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,3,22]],"date-time":"2021-03-22T00:00:00Z","timestamp":1616371200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,3,22]],"date-time":"2021-03-22T00:00:00Z","timestamp":1616371200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100012149","name":"National Key Scientific Instrument and Equipment Development Projects of China","doi-asserted-by":"publisher","award":["No.81527802"],"id":[{"id":"10.13039\/501100012149","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J CARS"],"published-print":{"date-parts":[[2021,4]]},"DOI":"10.1007\/s11548-021-02344-x","type":"journal-article","created":{"date-parts":[[2021,3,22]],"date-time":"2021-03-22T13:02:50Z","timestamp":1616418170000},"page":"673-682","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Lightweight pyramid network with spatial attention mechanism for accurate retinal vessel segmentation"],"prefix":"10.1007","volume":"16","author":[{"given":"Tengfei","family":"Tan","sequence":"first","affiliation":[]},{"given":"Zhilun","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hongwei","family":"Du","sequence":"additional","affiliation":[]},{"given":"Jinzhang","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Bensheng","family":"Qiu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,22]]},"reference":[{"issue":"1","key":"2344_CR1","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1016\/S0039-6257(01)00234-X","volume":"46","author":"TY Wong","year":"2001","unstructured":"Wong TY, Klein R, Klein BE, Tielsch JM, Hubbard L, Nieto F (2001) Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv phthal 46(1):59\u201380","journal-title":"Surv phthal"},{"issue":"4","key":"2344_CR2","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1007\/s11892-009-0043-4","volume":"9","author":"TT Nguyen","year":"2009","unstructured":"Nguyen TT, Wong TY (2009) Retinal vascular changes and diabetic retinopathy. Current Diabet Rep 9(4):277\u2013283","journal-title":"Current Diabet Rep"},{"key":"2344_CR3","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1016\/j.compbiomed.2016.09.019","volume":"79","author":"IN Figueiredo","year":"2016","unstructured":"Figueiredo IN, Moura S, Neves JS, Pinto L, Kumar S, Oliveira CM, Ramos JD (2016) Automated retina identification based on multiscale elastic registration. Comput Biol Med 79:130\u2013143. https:\/\/doi.org\/10.1016\/j.compbiomed.2016.09.019","journal-title":"Comput Biol Med"},{"key":"2344_CR4","doi-asserted-by":"crossref","unstructured":"Mart\u00ednez-P\u00e9rez ME, Hughes AD, Stanton AV, Thom SA, Bharath AA, Parker KH (1999) Retinal blood vessel segmentation by means of scale-space analysis and region growing. In: Medical Image Computing and Computer-Assisted Intervention\u2014MICCAI\u201999, pp 90\u201397","DOI":"10.1007\/10704282_10"},{"issue":"9","key":"2344_CR5","doi-asserted-by":"publisher","first-page":"1488","DOI":"10.1109\/TMI.2009.2017941","volume":"28","author":"B Al-Diri","year":"2009","unstructured":"Al-Diri B, Hunter A, Steel D (2009) An active contour model for segmenting and measuring retinal vessels. IEEE Trans Med Imag 28(9):1488\u20131497","journal-title":"IEEE Trans Med Imag"},{"issue":"9","key":"2344_CR6","doi-asserted-by":"publisher","first-page":"1200","DOI":"10.1109\/TMI.2006.879955","volume":"25","author":"AM Mendonca","year":"2006","unstructured":"Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imag 25(9):1200\u20131213","journal-title":"IEEE Trans Med Imag"},{"issue":"5","key":"2344_CR7","doi-asserted-by":"publisher","first-page":"1267","DOI":"10.1109\/TITB.2010.2052282","volume":"14","author":"CA Lupascu","year":"2010","unstructured":"Lupascu CA, Tegolo D, Trucco E (2010) Fabc: Retinal vessel segmentation using adaboost. IEEE Trans Inf Technol Biomed 14(5):1267\u20131274","journal-title":"IEEE Trans Inf Technol Biomed"},{"key":"2344_CR8","first-page":"634","volume":"2014","author":"JI Orlando","year":"2014","unstructured":"Orlando JI, Blaschko M (2014) Learning fully-connected crfs for blood vessel segmentation in retinal images. Med Image Comput Comput Assist Intervent ICCAI 2014:634\u2013641","journal-title":"Med Image Comput Comput Assist Intervent ICCAI"},{"issue":"11","key":"2344_CR9","doi-asserted-by":"publisher","first-page":"2369","DOI":"10.1109\/TMI.2016.2546227","volume":"35","author":"P Liskowski","year":"2016","unstructured":"Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imag 35(11):2369\u20132380","journal-title":"IEEE Trans Med Imag"},{"issue":"1","key":"2344_CR10","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1109\/TMI.2015.2457891","volume":"35","author":"Q Li","year":"2016","unstructured":"Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2016) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imag 35(1):109\u2013118","journal-title":"IEEE Trans Med Imag"},{"key":"2344_CR11","first-page":"132","volume":"2016","author":"H Fu","year":"2016","unstructured":"Fu H, Xu Y, Lin S, Kee Wong DW, Liu J (2016) Deepvessel: Retinal vessel segmentation via deep learning and conditional random field. Med Image Comput Comput Assist Intervent ICCAI 2016:132\u2013139","journal-title":"Med Image Comput Comput Assist Intervent ICCAI"},{"key":"2344_CR12","first-page":"264","volume":"2019","author":"Y Wu","year":"2019","unstructured":"Wu Y, Xia Y, Song Y, Zhang D, Liu D, Zhang C, Cai W (2019) Vessel-net: Retinal vessel segmentation under multi-path supervision. Med Image Comput Comput Assist Intervent ICCAI 2019:264\u2013272","journal-title":"Med Image Comput Comput Assist Intervent ICCAI"},{"key":"2344_CR13","first-page":"234","volume":"2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Med Image Comput Comput Assist Intervent ICCAI 2015:234\u2013241","journal-title":"Med Image Comput Comput Assist Intervent ICCAI"},{"key":"2344_CR14","first-page":"797","volume":"2019","author":"S Zhang","year":"2019","unstructured":"Zhang S, Fu H, Yan Y, Zhang Y, Wu Q, Yang M, Tan M, Xu Y (2019) Attention guided network for retinal image segmentation. Med Image Comput Comput Assist Intervent ICCAI 2019:797\u2013805","journal-title":"Med Image Comput Comput Assist Intervent ICCAI"},{"key":"2344_CR15","doi-asserted-by":"crossref","unstructured":"Jin Q, Meng Z, Pham TD, Chen Q, Wei L, Su R (2018) Dunet: A deformable network for retinal vessel segmentation. arXiv:1811.01206v1","DOI":"10.1016\/j.knosys.2019.04.025"},{"issue":"4","key":"2344_CR16","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"L Chen","year":"2018","unstructured":"Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Trans Pattern Anal Mach Intell 40(4):834\u2013848. https:\/\/doi.org\/10.1109\/TPAMI.2017.2699184","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"10","key":"2344_CR17","doi-asserted-by":"publisher","first-page":"2281","DOI":"10.1109\/TMI.2019.2903562","volume":"38","author":"Z Gu","year":"2019","unstructured":"Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y, Zhang T, Gao S, Liu J (2019) Ce-net: Context encoder network for 2d medical image segmentation. IEEE Trans Med Imag 38(10):2281\u20132292. https:\/\/doi.org\/10.1109\/TMI.2019.2903562","journal-title":"IEEE Trans Med Imag"},{"key":"2344_CR18","doi-asserted-by":"crossref","unstructured":"Wang W, Zhong J, Wu H, Wen Z, Qin J (2020) Rvseg-net: An efficient feature pyramid cascade network for retinal vessel segmentation. In: Medical Image Computing and Computer Assisted Intervention\u2014MICCAI 2020","DOI":"10.1007\/978-3-030-59722-1_77"},{"key":"2344_CR19","first-page":"21","volume":"2016","author":"W Liu","year":"2016","unstructured":"Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: Single shot multibox detector. ECCV 2016:21\u201337","journal-title":"ECCV"},{"key":"2344_CR20","first-page":"936","volume":"2017","author":"T Lin","year":"2017","unstructured":"Lin T, Doll\u00e1r P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. CVPR 2017:936\u2013944","journal-title":"CVPR"},{"key":"2344_CR21","doi-asserted-by":"crossref","unstructured":"Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: CVPR 2017:2261\u20132269","DOI":"10.1109\/CVPR.2017.243"},{"key":"2344_CR22","first-page":"770","volume":"2016","author":"K He","year":"2016","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. CVPR 2016:770\u2013778","journal-title":"CVPR"},{"issue":"4","key":"2344_CR23","doi-asserted-by":"publisher","first-page":"501","DOI":"10.1109\/TMI.2004.825627","volume":"23","author":"J Staal","year":"2004","unstructured":"Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imag 23(4):501\u2013509","journal-title":"IEEE Trans Med Imag"},{"issue":"3","key":"2344_CR24","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1109\/42.845178","volume":"19","author":"AD Hoover","year":"2000","unstructured":"Hoover AD, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imag 19(3):203\u2013210","journal-title":"IEEE Trans Med Imag"},{"issue":"5","key":"2344_CR25","doi-asserted-by":"publisher","first-page":"2004","DOI":"10.1167\/iovs.08-3018","volume":"50","author":"CG Owen","year":"2009","unstructured":"Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C (2009) Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Invest Ophthal Visual Sci 50(5):2004\u20132010","journal-title":"Invest Ophthal Visual Sci"},{"key":"2344_CR26","doi-asserted-by":"crossref","unstructured":"Setiawan AW, Mengko TR, Santoso OS, Suksmono AB (2013) Color retinal image enhancement using clahe. In: International Conference on ICT for Smart Society, pp 1\u20133","DOI":"10.1109\/ICTSS.2013.6588092"},{"key":"2344_CR27","first-page":"119","volume":"2018","author":"Y Wu","year":"2018","unstructured":"Wu Y, Xia Y, Song Y, Zhang Y, Cai W (2018) Multiscale network followed network model for retinal vessel segmentation. Med Image Comput Comput Assist Intervent MICCAI 2018:119\u2013126","journal-title":"Med Image Comput Comput Assist Intervent MICCAI"},{"key":"2344_CR28","doi-asserted-by":"crossref","unstructured":"Tharwat A (2020) Classification assessment methods. Appl Comput Inf","DOI":"10.1016\/j.aci.2018.08.003"},{"issue":"9","key":"2344_CR29","doi-asserted-by":"publisher","first-page":"1912","DOI":"10.1109\/TBME.2018.2828137","volume":"65","author":"Z Yan","year":"2018","unstructured":"Yan Z, Yang X, Cheng K (2018) Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng 65(9):1912\u20131923","journal-title":"IEEE Trans Biomed Eng"},{"issue":"9","key":"2344_CR30","doi-asserted-by":"publisher","first-page":"2538","DOI":"10.1109\/TBME.2012.2205687","volume":"59","author":"MM Fraz","year":"2012","unstructured":"Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538\u20132548","journal-title":"IEEE Trans Biomed Eng"}],"container-title":["International Journal of Computer Assisted Radiology and Surgery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11548-021-02344-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11548-021-02344-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11548-021-02344-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,17]],"date-time":"2021-04-17T15:22:41Z","timestamp":1618672961000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11548-021-02344-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3,22]]},"references-count":30,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2021,4]]}},"alternative-id":["2344"],"URL":"https:\/\/doi.org\/10.1007\/s11548-021-02344-x","relation":{},"ISSN":["1861-6410","1861-6429"],"issn-type":[{"value":"1861-6410","type":"print"},{"value":"1861-6429","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,3,22]]},"assertion":[{"value":"6 October 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 March 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 March 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest"}},{"value":"This article does not contain any studies with human participants performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}}]}}