{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T15:59:52Z","timestamp":1726761592727},"reference-count":27,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2019,8,5]],"date-time":"2019-08-05T00:00:00Z","timestamp":1564963200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,8,5]],"date-time":"2019-08-05T00:00:00Z","timestamp":1564963200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100002347","name":"Bundesministerium f\u00fcr Bildung und Forschung","doi-asserted-by":"publisher","award":["13GW0388A"],"id":[{"id":"10.13039\/501100002347","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J CARS"],"published-print":{"date-parts":[[2019,10]]},"DOI":"10.1007\/s11548-019-02042-9","type":"journal-article","created":{"date-parts":[[2019,8,5]],"date-time":"2019-08-05T03:37:32Z","timestamp":1564976252000},"page":"1741-1750","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":38,"title":["Synthesis of CT images from digital body phantoms using CycleGAN"],"prefix":"10.1007","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7476-3508","authenticated-orcid":false,"given":"Tom","family":"Russ","sequence":"first","affiliation":[]},{"given":"Stephan","family":"Goerttler","sequence":"additional","affiliation":[]},{"given":"Alena-Kathrin","family":"Schnurr","sequence":"additional","affiliation":[]},{"given":"Dominik F.","family":"Bauer","sequence":"additional","affiliation":[]},{"given":"Sepideh","family":"Hatamikia","sequence":"additional","affiliation":[]},{"given":"Lothar R.","family":"Schad","sequence":"additional","affiliation":[]},{"given":"Frank G.","family":"Z\u00f6llner","sequence":"additional","affiliation":[]},{"given":"Khanlian","family":"Chung","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,5]]},"reference":[{"key":"2042_CR1","doi-asserted-by":"crossref","unstructured":"Bermudez C, Plassard AJ, Davis LT, Newton AT, Resnick SM, Landman BA (2018) Learning implicit brain MRI manifolds with deep learning. In: Proceedings of SPIE 10574, medical imaging 2018: image processing, vol 105741L","DOI":"10.1117\/12.2293515"},{"issue":"6","key":"2042_CR2","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1109\/TPAMI.1986.4767851","volume":"8","author":"J Canny","year":"1986","unstructured":"Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679\u2013698","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"2042_CR3","doi-asserted-by":"crossref","unstructured":"Chen L, Jiang F, Zhang H, Wu S, Yu S, Xie Y (2016) Edge preservation ratio for image sharpness assessment. In: 2016 12th World congress on intelligent control and automation (WCICA), IEEE, pp 1377\u20131381","DOI":"10.1109\/WCICA.2016.7578241"},{"key":"2042_CR4","unstructured":"Christ P, Ettlinger F, Lipkova J, Kaissis G (2017) LiTS\u2014liver tumor segmentation challenge \n http:\/\/www.lits-challenge.com\/\n \n . Accessed 1 Aug 2019"},{"issue":"3","key":"2042_CR5","doi-asserted-by":"publisher","first-page":"781","DOI":"10.1109\/TMI.2017.2759102","volume":"37","author":"P Costa","year":"2018","unstructured":"Costa P, Galdran A, Meyer MI, Niemeijer M, Abr\u00e1moff M, Mendon\u00e7a AM, Campilho A (2018) End-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging 37(3):781\u2013791","journal-title":"IEEE Trans Med Imaging"},{"key":"2042_CR6","unstructured":"Guibas JT, Virdi TS, Li PS (2017) Synthetic medical images from dual generative adversarial networks. CoRR \n arXiv:1709.01872"},{"key":"2042_CR7","unstructured":"Jin X, Qi Y, Wu S (2017) CycleGAN face-off. CoRR \n arXiv:1712.03451"},{"issue":"2012","key":"2042_CR8","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","volume":"42","author":"G Litjens","year":"2017","unstructured":"Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, S\u00e1nchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42(2012):60\u201388","journal-title":"Med Image Anal"},{"issue":"2","key":"2042_CR9","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1016\/j.zemedi.2018.11.002","volume":"29","author":"AS Lundervold","year":"2019","unstructured":"Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Zeitschrift f\u00fcr Medizinische Physik 29(2):102\u2013127","journal-title":"Zeitschrift f\u00fcr Medizinische Physik"},{"issue":"3","key":"2042_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10921-018-0507-z","volume":"37","author":"J Maier","year":"2018","unstructured":"Maier J, Sawall S, Knaup M, Kachelrie\u00df M (2018) Deep scatter estimation (DSE): accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network. J Nondestruct Eval 37(3):1\u20139","journal-title":"J Nondestruct Eval"},{"key":"2042_CR11","doi-asserted-by":"publisher","DOI":"10.23915\/distill.00003","author":"A Odena","year":"2016","unstructured":"Odena A, Dumoulin V, Olah C (2016) Deconvolution and checkerboard artifacts. Distill. \n https:\/\/doi.org\/10.23915\/distill.00003","journal-title":"Distill"},{"key":"2042_CR12","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1007\/978-3-030-00320-3_18","volume-title":"PRedictive Intelligence in MEdicine","author":"Sahin Olut","year":"2018","unstructured":"Olut S, Sahin YH, Demir U, Unal G (2018) Generative adversarial training for MRA image synthesis using multi-contrast MRI. In: PRedictive intelligence in MEdicine, pp 147\u2013154"},{"issue":"9","key":"2042_CR13","doi-asserted-by":"publisher","first-page":"5186","DOI":"10.1118\/1.3589140","volume":"38","author":"EP R\u00fchrnschopf","year":"2011","unstructured":"R\u00fchrnschopf EP, Klingenbeck K (2011) A general framework and review of scatter correction methods in cone beam CT. Part 2: scatter estimation approaches. Med Phys 38(9):5186\u20135199","journal-title":"Med Phys"},{"issue":"3","key":"2042_CR14","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115(3):211\u2013252","journal-title":"Int J Comput Vis"},{"issue":"2","key":"2042_CR15","doi-asserted-by":"publisher","first-page":"150","DOI":"10.1016\/j.zemedi.2019.01.002","volume":"29","author":"AK Schnurr","year":"2019","unstructured":"Schnurr AK, Chung K, Russ T, Schad LR, Z\u00f6llner FG (2019) Simulation-based deep artifact correction with convolutional neural networks for limited angle artifacts. Zeitschrift f\u00fcr Medizinische Physik 29(2):150\u2013161","journal-title":"Zeitschrift f\u00fcr Medizinische Physik"},{"key":"2042_CR16","first-page":"80","volume-title":"Informatik aktuell","author":"Alena-Kathrin Schnurr","year":"2019","unstructured":"Schnurr AK, Schad LR, Z\u00f6llner FG (2019) Sparsely connected convolutional layers in CNNs for liver segmentation in CT. In: Bildverarbeitung f\u00fcr die Medizin 2019, Springer, New York, pp 80\u201385"},{"issue":"9","key":"2042_CR17","doi-asserted-by":"publisher","first-page":"4902","DOI":"10.1118\/1.3480985","volume":"37","author":"WP Segars","year":"2010","unstructured":"Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BMW (2010) 4D XCAT Phantom for multimodality imaging research. Med Phys 37(9):4902\u20134915","journal-title":"Med Phys"},{"key":"2042_CR18","doi-asserted-by":"crossref","unstructured":"Sharp P, Barber DC, Brown DG, Burgess AE, Metz CE, Myers KJ, Taylor CJ, Wagner RF, Brooks R, Hill CR, Kuhl DE, Smith MA, Wells P, Worthington B (1996) Report 54. J Int Comm Radiat Units Meas","DOI":"10.1093\/jicru\/os28.1.Report54"},{"key":"2042_CR19","doi-asserted-by":"crossref","unstructured":"Shrivastava A, Pfister T, Tuzel O, Susskind J, Wang W, Webb R (2017) Learning from simulated and unsupervised images through adversarial training. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 2242\u20132251","DOI":"10.1109\/CVPR.2017.241"},{"key":"2042_CR20","unstructured":"Soler L, Hostettler A, Agnus V, Charnoz A, Fasquel J, Moreau J, Osswald A, Bouhadjar M, Marescaux J (2010) 3D Image reconstruction for comparison of algorithm database: a patient specific anatomical and medical image database. \n https:\/\/www.ircad.fr\/fr\/recherche\/3d-ircadb-01-fr\/\n \n . Accessed 1 Aug 2019"},{"key":"2042_CR21","unstructured":"Walek P, Jan J, Ourednicek P, Skotakova J, Jira I (2013) Methodology for estimation of tissue noise power spectra in iteratively reconstructed MDCT data. In: 21st International conference on computer graphics, visualization and computer vision, pp 243\u2013252"},{"issue":"4","key":"2042_CR22","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang Z, Bovik AC, Sheikh HR (2004) Image quality assessment: from error measurement to structural similarity. IEEE Trans Image Proces 13(4):600\u2013612","journal-title":"IEEE Trans Image Proces"},{"key":"2042_CR23","doi-asserted-by":"crossref","unstructured":"Wang Z, Yang J, Jin H, Shechtman E, Agarwala A, Brandt J, Huang TS (2015) DeepFont: identify your font from an image. In: Proceedings of the 23rd ACM international conference on multimedia, MM\u201915, pp 451\u2013459","DOI":"10.1145\/2733373.2806219"},{"key":"2042_CR24","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1007\/978-3-319-68127-6_2","volume-title":"Simulation and Synthesis in Medical Imaging","author":"Jelmer M. Wolterink","year":"2017","unstructured":"Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van\u00a0den Berg CAT, I\u0161gum I (2017) Deep MR to CT synthesis using unpaired data. In: Simulation and synthesis in medical imaging, pp 14\u201323"},{"key":"2042_CR25","doi-asserted-by":"crossref","unstructured":"Wood E, Baltru\u0161aitis T, Morency LP, Robinson P, Bulling A (2016) Learning an appearance-based Gaze estimator from one million synthesised images. In: Proceedings of the ninth biennial ACM symposium on eye tracking research and applications\u2014ETRA \u201916, New York, pp 131\u2013138","DOI":"10.1145\/2857491.2857492"},{"issue":"8","key":"2042_CR26","doi-asserted-by":"publisher","first-page":"2378","DOI":"10.1109\/TIP.2011.2109730","volume":"20","author":"L Zhang","year":"2011","unstructured":"Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Proces 20(8):2378\u20132386","journal-title":"IEEE Trans Image Proces"},{"key":"2042_CR27","doi-asserted-by":"crossref","unstructured":"Zhu J, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International conference on computer vision (ICCV), IEEE, pp 2242\u20132251","DOI":"10.1109\/ICCV.2017.244"}],"container-title":["International Journal of Computer Assisted Radiology and Surgery"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11548-019-02042-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11548-019-02042-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11548-019-02042-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,8,3]],"date-time":"2020-08-03T23:48:10Z","timestamp":1596498490000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11548-019-02042-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8,5]]},"references-count":27,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2019,10]]}},"alternative-id":["2042"],"URL":"https:\/\/doi.org\/10.1007\/s11548-019-02042-9","relation":{},"ISSN":["1861-6410","1861-6429"],"issn-type":[{"value":"1861-6410","type":"print"},{"value":"1861-6429","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,8,5]]},"assertion":[{"value":"17 January 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 July 2019","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 August 2019","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with ethical standards"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"Informed consent was obtained from all individual participants included in the study.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Informed consent"}}]}}