{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:16:16Z","timestamp":1740143776474,"version":"3.37.3"},"reference-count":41,"publisher":"Springer Science and Business Media LLC","issue":"11","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100010829","name":"Department of Education, Xinjiang Uygur Autonomous Region","doi-asserted-by":"publisher","award":["2019Q003"],"id":[{"id":"10.13039\/501100010829","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Science and Technology Planning Project of Xinjiang Uygur Autonomous Region","award":["2019D01C114"]},{"DOI":"10.13039\/100016079","name":"Science and Technology Department of Xinjiang Uygur Autonomous Region","doi-asserted-by":"publisher","award":["2020E0275"],"id":[{"id":"10.13039\/100016079","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Med Biol Eng Comput"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1007\/s11517-023-02898-9","type":"journal-article","created":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T14:02:35Z","timestamp":1693576955000},"page":"3123-3135","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Classification of benign and malignant parotid tumors based on CT images combined with stack generalization model"],"prefix":"10.1007","volume":"61","author":[{"given":"NaZiLa","family":"HaLiMaiMaiTi","sequence":"first","affiliation":[]},{"given":"Yue","family":"Hong","sequence":"additional","affiliation":[]},{"given":"Min","family":"Li","sequence":"additional","affiliation":[]},{"given":"Hongtao","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yunling","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Chen","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xiaoyi","family":"Lv","sequence":"additional","affiliation":[]},{"given":"Cheng","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,1]]},"reference":[{"issue":"1","key":"2898_CR1","doi-asserted-by":"publisher","first-page":"25","DOI":"10.3126\/jgmcn.v10i1.17909","volume":"10","author":"NV Gurung","year":"2017","unstructured":"Gurung NV, Shrestha D, Acharya A, Gurung A, Shrestha S, Poudel S, Chapagain A, Regmi S (2017) Superficial parotidectomy by retrograde facial nerve dissection. J Gandaki Med Coll-Nepal 10(1):25\u201327","journal-title":"J Gandaki Med Coll-Nepal"},{"issue":"5","key":"2898_CR2","doi-asserted-by":"publisher","first-page":"627","DOI":"10.1016\/S0194-5998(99)70070-7","volume":"121","author":"M Magnano","year":"1999","unstructured":"Magnano M, Fernando Gervasio C, Cravero L, Machetta G, Lerda W, Beltramo G, Orecchia R, Ragona R, Bussi M (1999) Treatment of malignant neoplasms of the parotid gland. Otolaryngol-Head Neck Surg 121(5):627\u2013632","journal-title":"Otolaryngol-Head Neck Surg"},{"key":"2898_CR3","doi-asserted-by":"publisher","first-page":"563","DOI":"10.1016\/B978-012374212-4.50135-8","volume-title":"Cancer Imaging","author":"H Yerli","year":"2008","unstructured":"Yerli H, Agildere AM (2008) Parotid gland tumors: advanced imaging technologies[J]. Cancer Imaging pp 563\u2013573. https:\/\/doi.org\/10.1016\/B978-012374212-4.50135-8"},{"key":"2898_CR4","first-page":"463","volume":"11","author":"Y Xu","year":"2021","unstructured":"Xu Y, Shu Z, Song G, Liu Y, Pang P, Wen X, Gong X (2021) The role of preoperative computed tomography radiomics in distinguishing benign and malignant tumors of the parotid gland. Front Oncol 11:463","journal-title":"Front Oncol"},{"issue":"2","key":"2898_CR5","first-page":"204","volume":"27","author":"CH Lee","year":"2011","unstructured":"Lee CH, Lee HS, Jin SM, Lee SH, Pyo JS, Sohn JH (2011) Efficacy of fine needle aspiration biopsy in parotid gland tumors. Korean J Head Neck Oncol 27(2):204\u2013209","journal-title":"Korean J Head Neck Oncol"},{"issue":"10","key":"2898_CR6","doi-asserted-by":"publisher","first-page":"3025","DOI":"10.1007\/s00330-015-3713-4","volume":"25","author":"G Kaya","year":"2015","unstructured":"Kaya G, Howlett DC (2015) The diagnosis of parotid lesions. Eur Radiol 25(10):3025\u20133026","journal-title":"Eur Radiol"},{"issue":"1","key":"2898_CR7","doi-asserted-by":"publisher","first-page":"16","DOI":"10.18621\/eurj.2016.2.1.16","volume":"2","author":"E Sahin","year":"2016","unstructured":"Sahin E, Unlu I, Unlu EN, Kaptan Z, Uzunkulaoglu H, Samim EE, Tulaci KG, Karadavut Y (2016) Clinical importance of preoperative fine needle aspiration biopsy and computed tomography in parotid gland masses. Eur Res J 2(1):16\u201322","journal-title":"Eur Res J"},{"issue":"4","key":"2898_CR8","doi-asserted-by":"publisher","first-page":"424","DOI":"10.1016\/S0002-9610(05)80347-2","volume":"166","author":"KS Heller","year":"1993","unstructured":"Heller KS, Attie JN, Dubner S (1993) Accuracy of frozen section in the evaluation of salivary tumors. Am J Surg 166(4):424\u2013427","journal-title":"Am J Surg"},{"issue":"03","key":"2898_CR9","doi-asserted-by":"publisher","first-page":"283","DOI":"10.1055\/s-0031-1299130","volume":"33","author":"N Mansour","year":"2012","unstructured":"Mansour N, Stock K, Chaker A, Bas M, Knopf A (2012) Evaluation of parotid gland lesions with standard ultrasound, color duplex sonography, sonoelastography, and acoustic radiation force impulse imaging\u2013a pilot study. Ultraschall der Med-Eur J Ultrasound 33(03):283\u2013288","journal-title":"Ultraschall der Med-Eur J Ultrasound"},{"issue":"4","key":"2898_CR10","doi-asserted-by":"publisher","first-page":"694","DOI":"10.1002\/lio2.433","volume":"5","author":"K Aro","year":"2020","unstructured":"Aro K, Korpi J, Tarkkanen J, M\u00e4kitie A, Atula T (2020) Preoperative evaluation and treatment consideration of parotid gland tumors. Laryngoscope Investig Otolaryngol 5(4):694\u2013702","journal-title":"Laryngoscope Investig Otolaryngol"},{"issue":"1","key":"2898_CR11","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1002\/jmri.27061","volume":"52","author":"E G\u00f6k\u00e7e","year":"2020","unstructured":"G\u00f6k\u00e7e E (2020) Multiparametric magnetic resonance imaging for the diagnosis and differential diagnosis of parotid gland tumors. J Magn Reson Imaging 52(1):11\u201332","journal-title":"J Magn Reson Imaging"},{"issue":"15","key":"2898_CR12","first-page":"1864","volume":"14","author":"Y Yuan","year":"2021","unstructured":"Yuan Y, Hong Y, Liv X, Peng J, Li M, Guo D, Huang P, Chen C, Yan Z, Chen C, Li H, Ma H, Wang Y (2021) Differentiating benign and malignant parotid gland tumors using CT images and machine learning algorithms. Int J Clin Exp Med. 14(15):1864\u20131873","journal-title":"Int J Clin Exp Med."},{"key":"2898_CR13","doi-asserted-by":"publisher","first-page":"40360","DOI":"10.1109\/ACCESS.2021.3064752","volume":"9","author":"H Zhang","year":"2021","unstructured":"Zhang H, Lai H, Wang Y, Lv X, Hong Y, Peng J, Zhang Z, Chen C, Chen C (2021) Research on the classification of benign and malignant parotid tumors based on transfer learning and a convolutional neural network. IEEE Access 9:40360\u201340371","journal-title":"IEEE Access"},{"issue":"11","key":"2898_CR14","first-page":"900","volume":"10","author":"M Gabelloni","year":"2020","unstructured":"Gabelloni M, Faggioni L, Attanasio S, Vani V, Goddi A, Colantonio S, Germanese D, Caudai C, Bruschini L, Scarano M (2020) Can magnetic resonance radiomics analysis discriminate parotid gland tumors? Pilot Stud Diagn 10(11):900","journal-title":"Pilot Stud Diagn"},{"key":"2898_CR15","first-page":"012040","volume":"1576","author":"J Yuan","year":"2020","unstructured":"Yuan J, Fan Y, Lv X, Chen C, Wa Ng Y (2020) Research on the practical classification and privacy protection of CT images of parotid tumors based on ResNet50 model. J Phys: Conf Ser 1576:012040","journal-title":"J Phys: Conf Ser"},{"issue":"1","key":"2898_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-76389-4","volume":"10","author":"H Matsuo","year":"2020","unstructured":"Matsuo H, Nishio M, Kanda T, Kojita Y, Kono AK, Hori M, Teshima M, Otsuki N, Nibu K-i, Murakami T (2020) Diagnostic accuracy of deep-learning with anomaly detection for a small amount of imbalanced data: discriminating malignant parotid tumors in MRI. Sci Rep 10(1):1\u20139","journal-title":"Sci Rep"},{"issue":"1","key":"2898_CR17","doi-asserted-by":"publisher","first-page":"e4408","DOI":"10.1002\/nbm.4408","volume":"34","author":"YJ Chang","year":"2021","unstructured":"Chang YJ, Huang TY, Liu YJ, Chung HW, Juan CJ (2021) Classification of parotid gland tumors by using multimodal MRI and deep learning. NMR Biomed 34(1):e4408","journal-title":"NMR Biomed"},{"issue":"6","key":"2898_CR18","doi-asserted-by":"publisher","first-page":"472. e411","DOI":"10.1016\/j.crad.2020.10.019","volume":"76","author":"S Shao","year":"2021","unstructured":"Shao S, Zheng N, Mao N, Xue X, Cui J, Gao P, Wang B (2021) A triple-classification radiomics model for the differentiation of pleomorphic adenoma, Warthin tumour, and malignant salivary gland tumours on the basis of diffusion-weighted imaging. Clin Radiol 76(6):472. e411-472. e418","journal-title":"Clin Radiol"},{"issue":"5","key":"2898_CR19","doi-asserted-by":"publisher","first-page":"2886","DOI":"10.1007\/s00330-020-07421-4","volume":"31","author":"Y-m Zheng","year":"2021","unstructured":"Zheng Y-m, Xu W-j, Hao D-p, Liu X-j, Gao C-p, Tang G-z, Li J, Wang H-x, Dong C (2021) A CT-based radiomics nomogram for differentiation of lympho-associated benign and malignant lesions of the parotid gland. Eur Radiol 31(5):2886\u20132895","journal-title":"Eur Radiol"},{"issue":"7","key":"2898_CR20","doi-asserted-by":"publisher","first-page":"1492","DOI":"10.1109\/TBME.2016.2603119","volume":"64","author":"C Wachinger","year":"2016","unstructured":"Wachinger C, Brennan M, Sharp GC, Golland P (2016) Efficient descriptor-based segmentation of parotid glands with nonlocal means. IEEE Trans Biomed Eng 64(7):1492\u20131502","journal-title":"IEEE Trans Biomed Eng"},{"key":"2898_CR21","volume-title":"Neural networks and deep learning","author":"MA Nielsen","year":"2015","unstructured":"Nielsen MA (2015) Neural networks and deep learning, vol 25. Determination press San Francisco, CA"},{"issue":"13","key":"2898_CR22","doi-asserted-by":"publisher","first-page":"3254","DOI":"10.1049\/iet-ipr.2020.0122","volume":"14","author":"WM Salama","year":"2020","unstructured":"Salama WM, Elbagoury AM, Aly MH (2020) Novel breast cancer classification framework based on deep learning. IET Image Proc 14(13):3254\u20133259","journal-title":"IET Image Proc"},{"key":"2898_CR23","doi-asserted-by":"crossref","unstructured":"Elpeltagy M, Sallam H (2021) Automatic prediction of COVID\u2212 19 from chest images using modified ResNet50. Multimedia Tools and Applications:1\u201313","DOI":"10.1007\/s11042-021-10783-6"},{"issue":"2","key":"2898_CR24","doi-asserted-by":"publisher","first-page":"572","DOI":"10.1016\/j.bbe.2021.04.006","volume":"41","author":"NK Mishra","year":"2021","unstructured":"Mishra NK, Singh P, Joshi SD (2021) Automated detection of COVID-19 from CT scan using convolutional neural network. Biocybernetics Biomed Eng 41(2):572\u2013588","journal-title":"Biocybernetics Biomed Eng"},{"key":"2898_CR25","doi-asserted-by":"publisher","unstructured":"Liu Y, Pu H, Sun DW (2021) Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices[J].\u00a0Trends Food Sci Technol\u00a0113(7).\u00a0https:\/\/doi.org\/10.1016\/j.tifs.2021.04.042","DOI":"10.1016\/j.tifs.2021.04.042"},{"issue":"3","key":"2898_CR26","doi-asserted-by":"publisher","first-page":"267","DOI":"10.3390\/atmos11030267","volume":"11","author":"G Franch","year":"2020","unstructured":"Franch G, Nerini D, Pendesini M, Coviello L, Jurman G, Furlanello C (2020) Precipitation nowcasting with orographic enhanced stacked generalization: improving deep learning predictions on extreme events. Atmosphere 11(3):267","journal-title":"Atmosphere"},{"issue":"1","key":"2898_CR27","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1016\/j.jrmge.2021.05.004","volume":"14","author":"S Hou","year":"2021","unstructured":"Hou S, Liu Y, Yang Q (2021) Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning. J Rock Mech Geotech Eng 14(1):123\u2013143","journal-title":"J Rock Mech Geotech Eng"},{"issue":"2","key":"2898_CR28","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1016\/S0893-6080(05)80023-1","volume":"5","author":"DH Wolpert","year":"1992","unstructured":"Wolpert DH (1992) Stacked generalization Neural networks 5(2):241\u2013259","journal-title":"Stacked generalization Neural networks"},{"issue":"3","key":"2898_CR29","first-page":"188","volume":"13","author":"N Kardani","year":"2020","unstructured":"Kardani N, Zhou A, Nazem M, Shen SL (2020) Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J Rock Mech Geotech Eng 13(3):188\u2013201","journal-title":"J Rock Mech Geotech Eng"},{"issue":"4","key":"2898_CR30","doi-asserted-by":"publisher","first-page":"839","DOI":"10.1016\/j.jestch.2020.12.026","volume":"24","author":"H Arslan","year":"2021","unstructured":"Arslan H, Arslan H (2021) A new COVID-19 detection method from human genome sequences using CpG island features and KNN classifier. Eng Sci Technol, an Int J 24(4):839\u2013847","journal-title":"Eng Sci Technol, an Int J"},{"key":"2898_CR31","doi-asserted-by":"publisher","unstructured":"Taneja S, Gupta C, Goyal K et al (2014) An enhanced k-nearest neighbor algorithm using information gain and clustering. In: Fourth International Conference on Advanced Computing & Communication Technologies. IEEE, pp 325\u2013329.\u00a0https:\/\/doi.org\/10.1109\/ACCT.2014.22","DOI":"10.1109\/ACCT.2014.22"},{"key":"2898_CR32","doi-asserted-by":"publisher","first-page":"1356","DOI":"10.1016\/j.proeng.2014.03.129","volume":"69","author":"B Trstenjak","year":"2014","unstructured":"Trstenjak B, Mikac S, Donko D (2014) KNN with TF-IDF based framework for text categorization. Procedia Eng 69:1356\u20131364","journal-title":"Procedia Eng"},{"key":"2898_CR33","doi-asserted-by":"crossref","unstructured":"Sivalenka V, Bai A (2021) An analysis on prediction of breast cancer using radius Nearest Neighbor algorithm over other classification algorithms[J]","DOI":"10.1016\/j.matpr.2021.03.344"},{"key":"2898_CR34","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4614-7138-7","volume-title":"An introduction to statistical learning,","author":"G James","year":"2013","unstructured":"James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer"},{"issue":"2","key":"2898_CR35","first-page":"100029","volume":"1","author":"A Tripathi","year":"2021","unstructured":"Tripathi A, Goswami T, Trivedi SK, Sharma RD (2021) A multi class random forest (MCRF) model for classification of small plant peptides. Int J Inform Manag Data Insights 1(2):100029","journal-title":"Int J Inform Manag Data Insights"},{"key":"2898_CR36","doi-asserted-by":"publisher","first-page":"811","DOI":"10.1016\/j.procs.2019.12.054","volume":"162","author":"B Ruyu","year":"2019","unstructured":"Ruyu B, Mo H, Haifeng L (2019) A comparison of credit rating classification models based on spark-evidence from lending-club. Procedia Comput Sci 162:811\u2013818","journal-title":"Procedia Comput Sci"},{"key":"2898_CR37","doi-asserted-by":"publisher","first-page":"136907","DOI":"10.1109\/ACCESS.2019.2942413","volume":"7","author":"N Almugren","year":"2019","unstructured":"Almugren N, Alshamlan HM (2019) New bio-marker gene discovery algorithms for cancer gene expression profile. IEEE Access 7:136907\u2013136913","journal-title":"IEEE Access"},{"issue":"3","key":"2898_CR38","first-page":"61","volume":"10","author":"J Platt","year":"1999","unstructured":"Platt J (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classifiers 10(3):61\u201374","journal-title":"Adv Large Margin Classifiers"},{"key":"2898_CR39","doi-asserted-by":"publisher","first-page":"100014","DOI":"10.1016\/j.socl.2021.100014","volume":"3","author":"KR Singh","year":"2021","unstructured":"Singh KR, Neethu K, Madhurekaa K, Harita A, Mohan P (2021) Parallel SVM model for forest fire prediction. Soft Comput Lett 3:100014","journal-title":"Soft Comput Lett"},{"key":"2898_CR40","doi-asserted-by":"publisher","first-page":"108243","DOI":"10.1016\/j.buildenv.2021.108243","volume":"205","author":"M Mart\u00ednez-Comesa\u00f1a","year":"2021","unstructured":"Mart\u00ednez-Comesa\u00f1a M, Ogando-Mart\u00ednez A, Troncoso-Pastoriza F, L\u00f3pez-G\u00f3mez J, Febrero-Garrido L, Granada-\u00c1lvarez E (2021) Use of optimised MLP neural networks for spatiotemporal estimation of indoor environmental conditions of existing buildings. Build Environ 205:108243","journal-title":"Build Environ"},{"key":"2898_CR41","doi-asserted-by":"publisher","unstructured":"Singh G, Sachan M (2015) Multi-layer perceptron (MLP) neural network technique for offline handwritten Gurmukhi character recognition. In: IEEE International Conference on Computational Intelligence & Computing Research, IEEE.\u00a0https:\/\/doi.org\/10.1109\/ICCIC.2014.7238334","DOI":"10.1109\/ICCIC.2014.7238334"}],"container-title":["Medical & Biological Engineering & Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-023-02898-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11517-023-02898-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-023-02898-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,18]],"date-time":"2023-10-18T01:10:27Z","timestamp":1697591427000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11517-023-02898-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9,1]]},"references-count":41,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2023,11]]}},"alternative-id":["2898"],"URL":"https:\/\/doi.org\/10.1007\/s11517-023-02898-9","relation":{},"ISSN":["0140-0118","1741-0444"],"issn-type":[{"type":"print","value":"0140-0118"},{"type":"electronic","value":"1741-0444"}],"subject":[],"published":{"date-parts":[[2023,9,1]]},"assertion":[{"value":"28 March 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 July 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 September 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}