{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:16:27Z","timestamp":1740143787706,"version":"3.37.3"},"reference-count":48,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T00:00:00Z","timestamp":1658448000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T00:00:00Z","timestamp":1658448000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61976110","11931008","62176112"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Med Biol Eng Comput"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1007\/s11517-022-02628-7","type":"journal-article","created":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T17:09:41Z","timestamp":1658509781000},"page":"2813-2823","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Estimating high-order brain functional networks by correlation-preserving embedding"],"prefix":"10.1007","volume":"60","author":[{"given":"Hui","family":"Su","sequence":"first","affiliation":[]},{"given":"Limei","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Lishan","family":"Qiao","sequence":"additional","affiliation":[]},{"given":"Mingxia","family":"Liu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,22]]},"reference":[{"issue":"6","key":"2628_CR1","doi-asserted-by":"publisher","first-page":"1648","DOI":"10.1016\/j.neuropsychologia.2008.01.027","volume":"46","author":"Y Liu","year":"2008","unstructured":"Liu Y et al (2008) Regional homogeneity, functional connectivity and imaging markers of Alzheimer\u2019s disease: a review of resting-state fMRI studies. Neuropsychologia 46(6):1648\u20131656","journal-title":"Neuropsychologia"},{"issue":"4","key":"2628_CR2","doi-asserted-by":"publisher","first-page":"581","DOI":"10.1016\/j.nic.2017.06.001","volume":"27","author":"AK Azeez","year":"2017","unstructured":"Azeez AK, Biswal BB (2017) A review of resting-state analysis methods. Neuroimaging Clin 27(4):581\u2013592","journal-title":"Neuroimaging Clin"},{"issue":"1","key":"2628_CR3","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1016\/j.conb.2007.01.009","volume":"17","author":"DH Geschwind","year":"2007","unstructured":"Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17(1):103\u2013111","journal-title":"Curr Opin Neurobiol"},{"issue":"8","key":"2628_CR4","doi-asserted-by":"publisher","first-page":"921","DOI":"10.1097\/CHI.0b013e318179964f","volume":"47","author":"E Simonoff","year":"2008","unstructured":"Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry 47(8):921\u2013929","journal-title":"J Am Acad Child Adolesc Psychiatry"},{"issue":"5","key":"2628_CR5","doi-asserted-by":"publisher","first-page":"429","DOI":"10.1016\/j.biopsych.2006.09.020","volume":"62","author":"MD Greicius","year":"2007","unstructured":"Greicius MD et al (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiat 62(5):429\u2013437","journal-title":"Biol Psychiat"},{"issue":"10","key":"2628_CR6","doi-asserted-by":"publisher","first-page":"1138","DOI":"10.1001\/jamapsychiatry.2014.1087","volume":"71","author":"KR Cullen","year":"2014","unstructured":"Cullen KR et al (2014) Abnormal amygdala resting-state functional connectivity in adolescent depression. JAMA Psychiat 71(10):1138\u20131147","journal-title":"JAMA Psychiat"},{"issue":"2","key":"2628_CR7","doi-asserted-by":"publisher","first-page":"496","DOI":"10.1016\/j.neuroimage.2005.12.033","volume":"31","author":"L Wang","year":"2006","unstructured":"Wang L et al (2006) Changes in hippocampal connectivity in the early stages of Alzheimer\u2019s disease: evidence from resting state fMRI. Neuroimage 31(2):496\u2013504","journal-title":"Neuroimage"},{"issue":"4","key":"2628_CR8","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1002\/hbm.20160","volume":"26","author":"SA Rombouts","year":"2005","unstructured":"Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P (2005) Altered resting state networks in mild cognitive impairment and mild Alzheimer\u2019s disease: an fMRI study. Hum Brain Mapp 26(4):231\u2013239","journal-title":"Hum Brain Mapp"},{"issue":"11","key":"2628_CR9","doi-asserted-by":"publisher","first-page":"2317","DOI":"10.1016\/j.clinph.2007.08.010","volume":"118","author":"JC Reijneveld","year":"2007","unstructured":"Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118(11):2317\u20132331","journal-title":"Clin Neurophysiol"},{"key":"2628_CR10","first-page":"16","volume":"4","author":"J Wang","year":"2010","unstructured":"Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci 4:16","journal-title":"Front Syst Neurosci"},{"key":"2628_CR11","doi-asserted-by":"publisher","first-page":"116604","DOI":"10.1016\/j.neuroimage.2020.116604","volume":"211","author":"U Pervaiz","year":"2020","unstructured":"Pervaiz U, Vidaurre D, Woolrich MW, Smith SM (2020) Optimising network modelling methods for fMRI. Neuroimage 211:116604","journal-title":"Neuroimage"},{"key":"2628_CR12","doi-asserted-by":"publisher","first-page":"399","DOI":"10.1016\/j.neuroimage.2016.07.058","volume":"141","author":"L Qiao","year":"2016","unstructured":"Qiao L, Zhang H, Kim M, Teng S, Zhang L, Shen D (2016) Estimating functional brain networks by incorporating a modularity prior. Neuroimage 141:399\u2013407","journal-title":"Neuroimage"},{"issue":"4","key":"2628_CR13","doi-asserted-by":"publisher","first-page":"1273","DOI":"10.1016\/S1053-8119(03)00202-7","volume":"19","author":"KJ Friston","year":"2003","unstructured":"Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19(4):1273\u20131302","journal-title":"Neuroimage"},{"issue":"12","key":"2628_CR14","doi-asserted-by":"publisher","first-page":"666","DOI":"10.1016\/j.tics.2013.09.016","volume":"17","author":"SM Smith","year":"2013","unstructured":"Smith SM et al (2013) Functional connectomics from resting-state fMRI. Trends Cogn Sci 17(12):666\u2013682","journal-title":"Trends Cogn Sci"},{"issue":"3","key":"2628_CR15","doi-asserted-by":"publisher","first-page":"1132","DOI":"10.1016\/j.neuroimage.2010.12.047","volume":"55","author":"AJ Schwarz","year":"2011","unstructured":"Schwarz AJ, McGonigle J (2011) Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data. Neuroimage 55(3):1132\u20131146","journal-title":"Neuroimage"},{"key":"2628_CR16","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1016\/j.neuroimage.2017.02.005","volume":"152","author":"MP van den Heuvel","year":"2017","unstructured":"van den Heuvel MP, de Lange SC, Zalesky A, Seguin C, Yeo BT, Schmidt R (2017) Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations. Neuroimage 152:437\u2013449","journal-title":"Neuroimage"},{"issue":"3","key":"2628_CR17","doi-asserted-by":"publisher","first-page":"935","DOI":"10.1016\/j.neuroimage.2009.12.120","volume":"50","author":"S Huang","year":"2010","unstructured":"Huang S et al (2010) Learning brain connectivity of Alzheimer\u2019s disease by sparse inverse covariance estimation. Neuroimage 50(3):935\u2013949","journal-title":"Neuroimage"},{"key":"2628_CR18","doi-asserted-by":"publisher","unstructured":"Tan Z, Yang P, Nehorai A (2013) Joint-sparse recovery in compressed sensing with dictionary mismatch. 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) 248\u2013251. https:\/\/doi.org\/10.1109\/CAMSAP.2013.6714054","DOI":"10.1109\/CAMSAP.2013.6714054"},{"key":"2628_CR19","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1016\/j.neuroimage.2013.07.041","volume":"102","author":"SM Plis","year":"2014","unstructured":"Plis SM et al (2014) High-order interactions observed in multi-task intrinsic networks are dominant indicators of aberrant brain function in schizophrenia. Neuroimage 102:35\u201348","journal-title":"Neuroimage"},{"issue":"20","key":"2628_CR20","doi-asserted-by":"publisher","first-page":"208102","DOI":"10.1103\/PhysRevLett.106.208102","volume":"106","author":"JH Macke","year":"2011","unstructured":"Macke JH, Opper M, Bethge M (2011) Common input explains higher-order correlations and entropy in a simple model of neural population activity. Phys Rev Lett 106(20):208102","journal-title":"Phys Rev Lett"},{"key":"2628_CR21","doi-asserted-by":"publisher","first-page":"639","DOI":"10.3389\/fnins.2017.00639","volume":"11","author":"H Guo","year":"2017","unstructured":"Guo H, Liu L, Chen J, Xu Y, Jie X (2017) Alzheimer classification using a minimum spanning tree of high-order functional network on fMRI dataset. Front Neurosci 11:639","journal-title":"Front Neurosci"},{"key":"2628_CR22","doi-asserted-by":"publisher","first-page":"3","DOI":"10.3389\/fninf.2018.00003","volume":"12","author":"Y Zhou","year":"2018","unstructured":"Zhou Y, Qiao L, Li W, Zhang L, Shen D (2018) Simultaneous estimation of low-and high-order functional connectivity for identifying mild cognitive impairment. Front Neuroinform 12:3","journal-title":"Front Neuroinform"},{"issue":"3","key":"2628_CR23","doi-asserted-by":"publisher","first-page":"271","DOI":"10.1007\/s12021-017-9330-4","volume":"15","author":"X Chen","year":"2017","unstructured":"Chen X, Zhang H, Lee S-W, Shen D (2017) Hierarchical high-order functional connectivity networks and selective feature fusion for MCI classification. Neuroinformatics 15(3):271\u2013284","journal-title":"Neuroinformatics"},{"key":"2628_CR24","doi-asserted-by":"publisher","first-page":"184","DOI":"10.3389\/fnhum.2018.00184","volume":"12","author":"F Zhao","year":"2018","unstructured":"Zhao F, Zhang H, Rekik I, An Z, Shen D (2018) Diagnosis of autism spectrum disorders using multi-level high-order functional networks derived from resting-state functional mri. Front Hum Neurosci 12:184","journal-title":"Front Hum Neurosci"},{"issue":"9","key":"2628_CR25","doi-asserted-by":"publisher","first-page":"3282","DOI":"10.1002\/hbm.23240","volume":"37","author":"X Chen","year":"2016","unstructured":"Chen X et al (2016) High-order resting-state functional connectivity network for MCI classification. Hum Brain Mapp 37(9):3282\u20133296","journal-title":"Hum Brain Mapp"},{"issue":"3","key":"2628_CR26","doi-asserted-by":"publisher","first-page":"1095","DOI":"10.3233\/JAD-160092","volume":"54","author":"H Zhang","year":"2016","unstructured":"Zhang H et al (2016) Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment. J Alzheimer\u2019s Dis 54(3):1095\u20131112","journal-title":"J Alzheimer\u2019s Dis"},{"key":"2628_CR27","doi-asserted-by":"crossref","unstructured":"Jia X, Zhang H, Adeli E, Shen D (2017) Consciousness level and recovery outcome prediction using high-order brain functional connectivity network. International Workshop on Connectomics in Neuroimaging 17\u201324. First online: 02 Sept 2017","DOI":"10.1007\/978-3-319-67159-8_3"},{"key":"2628_CR28","doi-asserted-by":"publisher","unstructured":"Guo T, Zhang Y, Xue Y, Qiao L, Shen D (2021) Brain function network: higher order vs. more discrimination. Front Neurosci 1033.\u00a0https:\/\/doi.org\/10.3389\/fnins.2021.696639","DOI":"10.3389\/fnins.2021.696639"},{"key":"2628_CR29","doi-asserted-by":"publisher","first-page":"959","DOI":"10.3389\/fnins.2018.00959","volume":"12","author":"Y Zhou","year":"2018","unstructured":"Zhou Y, Zhang L, Teng S, Qiao L, Shen D (2018) Improving sparsity and modularity of high-order functional connectivity networks for MCI and ASD identification. Front Neurosci 12:959","journal-title":"Front Neurosci"},{"key":"2628_CR30","doi-asserted-by":"publisher","first-page":"102004","DOI":"10.1016\/j.artmed.2020.102004","volume":"111","author":"L Sun","year":"2021","unstructured":"Sun L, Xue Y, Zhang Y, Qiao L, Zhang L, Liu M (2021) Estimating sparse functional connectivity networks via hyperparameter-free learning model. Artif Intell Med 111:102004","journal-title":"Artif Intell Med"},{"issue":"1","key":"2628_CR31","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1006\/nimg.2001.0978","volume":"15","author":"N Tzourio-Mazoyer","year":"2002","unstructured":"Tzourio-Mazoyer N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273\u2013289","journal-title":"Neuroimage"},{"key":"2628_CR32","doi-asserted-by":"publisher","first-page":"55","DOI":"10.3389\/fninf.2017.00055","volume":"11","author":"W Li","year":"2017","unstructured":"Li W, Wang Z, Zhang L, Qiao L, Shen D (2017) Remodeling Pearson\u2019s correlation for functional brain network estimation and autism spectrum disorder identification. Front Neuroinform 11:55","journal-title":"Front Neuroinform"},{"issue":"3","key":"2628_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1961189.1961199","volume":"2","author":"C-C Chang","year":"2011","unstructured":"Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):1\u201327","journal-title":"ACM Trans Intell Syst Technol (TIST)"},{"key":"2628_CR34","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1016\/j.neuroimage.2019.02.062","volume":"192","author":"K Dadi","year":"2019","unstructured":"Dadi K et al (2019) Benchmarking functional connectome-based predictive models for resting-state fMRI. Neuroimage 192:115\u2013134","journal-title":"Neuroimage"},{"issue":"Mar","key":"2628_CR35","first-page":"1157","volume":"3","author":"I Guyon","year":"2003","unstructured":"Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3(Mar):1157\u20131182","journal-title":"J Mach Learn Res"},{"issue":"1","key":"2628_CR36","doi-asserted-by":"publisher","first-page":"016114","DOI":"10.1103\/PhysRevE.80.016114","volume":"80","author":"S G\u00f3mez","year":"2009","unstructured":"G\u00f3mez S, Jensen P, Arenas A (2009) Analysis of community structure in networks of correlated data. Phys Rev E 80(1):016114","journal-title":"Phys Rev E"},{"issue":"4","key":"2628_CR37","doi-asserted-by":"publisher","first-page":"2068","DOI":"10.1016\/j.neuroimage.2011.03.069","volume":"56","author":"M Rubinov","year":"2011","unstructured":"Rubinov M, Sporns O (2011) Weight-conserving characterization of complex functional brain networks. Neuroimage 56(4):2068\u20132079","journal-title":"Neuroimage"},{"issue":"7","key":"2628_CR38","first-page":"1912","volume":"67","author":"X Jiang","year":"2019","unstructured":"Jiang X, Zhang L, Qiao L, Shen D (2019) Estimating functional connectivity networks via low-rank tensor approximation with applications to MCI identification. IEEE Trans Biomed Eng 67(7):1912\u20131920","journal-title":"IEEE Trans Biomed Eng"},{"issue":"7","key":"2628_CR39","doi-asserted-by":"publisher","first-page":"e0235039","DOI":"10.1371\/journal.pone.0235039","volume":"15","author":"Y Xue","year":"2020","unstructured":"Xue Y, Zhang L, Qiao L, Shen D (2020) Estimating sparse functional brain networks with spatial constraints for MCI identification. PLoS ONE 15(7):e0235039","journal-title":"PLoS ONE"},{"issue":"4","key":"2628_CR40","doi-asserted-by":"publisher","first-page":"424","DOI":"10.1097\/WCO.0b013e328306f2c5","volume":"21","author":"M Greicius","year":"2008","unstructured":"Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21(4):424\u2013430","journal-title":"Curr Opin Neurol"},{"issue":"3","key":"2628_CR41","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1016\/j.jalz.2011.03.008","volume":"7","author":"MS Albert","year":"2011","unstructured":"Albert MS et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer\u2019s disease: recommendations from the National Institute on Aging-Alzheimer\u2019s Association workgroups on diagnostic guidelines for Alzheimer\u2019s disease. Alzheimer\u2019s Dement 7(3):270\u2013279","journal-title":"Alzheimer\u2019s Dement"},{"key":"2628_CR42","doi-asserted-by":"publisher","first-page":"424","DOI":"10.2307\/1912791","volume":"37","author":"CW Granger","year":"1969","unstructured":"Granger CW (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica: J Econ Soc 37:424\u2013438","journal-title":"Econometrica: J Econ Soc"},{"issue":"1\u20132","key":"2628_CR43","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1002\/hbm.460020104","volume":"2","author":"A Mclntosh","year":"1994","unstructured":"Mclntosh A, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2(1\u20132):2\u201322","journal-title":"Hum Brain Mapp"},{"issue":"2","key":"2628_CR44","doi-asserted-by":"publisher","first-page":"1545","DOI":"10.1016\/j.neuroimage.2009.08.065","volume":"49","author":"JD Ramsey","year":"2010","unstructured":"Ramsey JD, Hanson SJ, Hanson C, Halchenko YO, Poldrack RA, Glymour C (2010) Six problems for causal inference from fMRI. Neuroimage 49(2):1545\u20131558","journal-title":"Neuroimage"},{"issue":"2","key":"2628_CR45","doi-asserted-by":"publisher","first-page":"875","DOI":"10.1016\/j.neuroimage.2010.08.063","volume":"54","author":"SM Smith","year":"2011","unstructured":"Smith SM et al (2011) Network modelling methods for FMRI. Neuroimage 54(2):875\u2013891","journal-title":"Neuroimage"},{"issue":"1\u20134","key":"2628_CR46","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1016\/0167-2789(92)90102-S","volume":"58","author":"J Theiler","year":"1992","unstructured":"Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenom 58(1\u20134):77\u201394","journal-title":"Physica D: Nonlinear Phenom"},{"issue":"suppl_2","key":"2628_CR47","doi-asserted-by":"publisher","first-page":"S231","DOI":"10.1093\/bioinformatics\/18.suppl_2.S231","volume":"18","author":"R Steuer","year":"2002","unstructured":"Steuer R, Kurths J, Daub CO, Weise J, Selbig J (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(suppl_2):S231\u2013S240","journal-title":"Bioinformatics"},{"issue":"3","key":"2628_CR48","first-page":"1","volume":"14","author":"WL Hamilton","year":"2020","unstructured":"Hamilton WL (2020) Graph representation learning. Synth Lect Artif Intell Mach Learn 14(3):1\u2013159","journal-title":"Synth Lect Artif Intell Mach Learn"}],"container-title":["Medical & Biological Engineering & Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-022-02628-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11517-022-02628-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-022-02628-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,10]],"date-time":"2022-09-10T03:58:21Z","timestamp":1662782301000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11517-022-02628-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,22]]},"references-count":48,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2022,10]]}},"alternative-id":["2628"],"URL":"https:\/\/doi.org\/10.1007\/s11517-022-02628-7","relation":{},"ISSN":["0140-0118","1741-0444"],"issn-type":[{"type":"print","value":"0140-0118"},{"type":"electronic","value":"1741-0444"}],"subject":[],"published":{"date-parts":[[2022,7,22]]},"assertion":[{"value":"1 December 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 June 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 July 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}