{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:41:17Z","timestamp":1732041677580},"reference-count":39,"publisher":"Springer Science and Business Media LLC","issue":"9","license":[{"start":{"date-parts":[[2022,7,9]],"date-time":"2022-07-09T00:00:00Z","timestamp":1657324800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,7,9]],"date-time":"2022-07-09T00:00:00Z","timestamp":1657324800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100012306","name":"Universit\u00e0 degli Studi di Trieste","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100012306","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Med Biol Eng Comput"],"published-print":{"date-parts":[[2022,9]]},"abstract":"Abstract<\/jats:title>Diagnosis of etiology in early-stage ischemic heart disease (IHD) and dilated cardiomyopathy (DCM) patients may be challenging. We aimed at investigating, by means of classification and regression tree (CART) modeling, the predictive power of heart rate variability (HRV) features together with clinical parameters to support the diagnosis in the early stage of IHD and DCM. The study included 263 IHD and 181 DCM patients, as well as 689 healthy subjects. A 24\u00a0h Holter monitoring was used and linear and non-linear HRV parameters were extracted considering both normal and ectopic beats (heart rate total variability signal). We used a CART algorithm to produce classification models based on HRV together with relevant clinical (age, sex, and left ventricular ejection fraction, LVEF) features. Among HRV parameters, MeanRR, SDNN, pNN50, LF, LF\/HF, LFn, FD, Beta exp were selected by the CART algorithm and included in the produced models. The model based on pNN50, FD, sex, age, and LVEF features presented the highest accuracy (73.3%). The proposed approach based on HRV parameters, age, sex, and LVEF features highlighted the possibility to produce clinically interpretable models capable to differentiate IHD, DCM, and healthy subjects with accuracy which is clinically relevant in first steps of the IHD and DCM diagnostic process.<\/jats:p>\n Graphical abstract<\/jats:bold><\/jats:p>","DOI":"10.1007\/s11517-022-02618-9","type":"journal-article","created":{"date-parts":[[2022,7,9]],"date-time":"2022-07-09T10:11:56Z","timestamp":1657361516000},"page":"2655-2663","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Toward a diagnostic CART model for Ischemic heart disease and idiopathic dilated cardiomyopathy based on heart rate total variability"],"prefix":"10.1007","volume":"60","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5749-6308","authenticated-orcid":false,"given":"Agostino","family":"Accardo","sequence":"first","affiliation":[]},{"given":"Luca","family":"Restivo","sequence":"additional","affiliation":[]},{"given":"Milo\u0161","family":"Aj\u010devi\u0107","sequence":"additional","affiliation":[]},{"given":"Aleksandar","family":"Miladinovi\u0107","sequence":"additional","affiliation":[]},{"given":"Katerina","family":"Iscra","sequence":"additional","affiliation":[]},{"given":"Giulia","family":"Silveri","sequence":"additional","affiliation":[]},{"given":"Marco","family":"Merlo","sequence":"additional","affiliation":[]},{"given":"Gianfranco","family":"Sinagra","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,9]]},"reference":[{"key":"2618_CR1","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1093\/eurheartj\/ehm342","volume":"29","author":"P Elliott","year":"2008","unstructured":"Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, K\u00fchl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270\u2013276. https:\/\/doi.org\/10.1093\/eurheartj\/ehm342","journal-title":"Eur Heart J"},{"key":"2618_CR2","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1002\/ejhf.1103","volume":"20","author":"M Merlo","year":"2018","unstructured":"Merlo M, Cannat\u00e0 A, Gobbo M, Stolfo D, Elliott PM, Sinagra G (2018) Evolving concepts in dilated cardiomyopathy. Eur J Heart Fail 20:228\u2013239. https:\/\/doi.org\/10.1002\/ejhf.1103","journal-title":"Eur J Heart Fail"},{"key":"2618_CR3","doi-asserted-by":"publisher","first-page":"256","DOI":"10.1016\/0002-9149(87)90795-8","volume":"59","author":"RE Kleiger","year":"1987","unstructured":"Kleiger RE, Miller JP, Bigger JT, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256\u2013262. https:\/\/doi.org\/10.1016\/0002-9149(87)90795-8","journal-title":"Am J Cardiol"},{"key":"2618_CR4","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1016\/j.ijcard.2020.01.069","volume":"305","author":"AS Shah","year":"2020","unstructured":"Shah AS, Lampert R, Goldberg J, Bremner JD, Li L, Thames MD, Vaccarino V, Shah AJ (2020) Alterations in heart rate variability are associated with abnormal myocardial perfusion. Int J Cardiol 305:99\u2013105. https:\/\/doi.org\/10.1016\/j.ijcard.2020.01.069","journal-title":"Int J Cardiol"},{"key":"2618_CR5","doi-asserted-by":"publisher","first-page":"551","DOI":"10.1001\/jama.2015.18421","volume":"315","author":"AM Darcy","year":"2016","unstructured":"Darcy AM, Louie AK, Roberts LW (2016) Machine learning and the profession of medicine. JAMA 315:551\u2013552. https:\/\/doi.org\/10.1001\/jama.2015.18421","journal-title":"JAMA"},{"key":"2618_CR6","doi-asserted-by":"publisher","first-page":"1920","DOI":"10.1161\/CIRCULATIONAHA.115.001593","volume":"132","author":"RC Deo","year":"2015","unstructured":"Deo RC (2015) Machine learning in medicine. Circulation 132:1920\u20131930. https:\/\/doi.org\/10.1161\/CIRCULATIONAHA.115.001593","journal-title":"Circulation"},{"key":"2618_CR7","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/s0933-3657(01)00077-x","volume":"23","author":"I Kononenko","year":"2001","unstructured":"Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23:89\u2013109. https:\/\/doi.org\/10.1016\/s0933-3657(01)00077-x","journal-title":"Artif Intell Med"},{"key":"2618_CR8","doi-asserted-by":"publisher","first-page":"105808","DOI":"10.1016\/j.cmpb.2020.105808","volume":"198","author":"A Miladinovi\u0107","year":"2021","unstructured":"Miladinovi\u0107 A, Aj\u010devi\u0107 M, Jarmolowska J, Marusic U, Colussi M, Silveri G, Battaglini PP, Accardo A (2021) Effect of power feature covariance shift on BCI spatial-filtering techniques: a comparative study. Comput Methods Programs Biomed 198:105808. https:\/\/doi.org\/10.1016\/j.cmpb.2020.105808","journal-title":"Comput Methods Programs Biomed"},{"key":"2618_CR9","doi-asserted-by":"publisher","first-page":"1216","DOI":"10.1056\/NEJMp1606181","volume":"375","author":"Z Obermeyer","year":"2016","unstructured":"Obermeyer Z, Emanuel EJ (2016) Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med 375:1216\u20131219. https:\/\/doi.org\/10.1056\/NEJMp1606181","journal-title":"N Engl J Med"},{"key":"2618_CR10","doi-asserted-by":"publisher","first-page":"146","DOI":"10.1186\/s12911-019-0874-0","volume":"19","author":"R Elshawi","year":"2019","unstructured":"Elshawi R, Al-Mallah MH, Sakr S (2019) On the interpretability of machine learning-based model for predicting hypertension. BMC Med Inform Decis Mak 19:146. https:\/\/doi.org\/10.1186\/s12911-019-0874-0","journal-title":"BMC Med Inform Decis Mak"},{"key":"2618_CR11","doi-asserted-by":"publisher","first-page":"7351061","DOI":"10.1155\/2022\/7351061","volume":"2022","author":"U Nagavelli","year":"2022","unstructured":"Nagavelli U, Samanta D, Chakraborty P (2022) Machine learning technology-based heart disease detection models. J Healthc Eng 2022:7351061. https:\/\/doi.org\/10.1155\/2022\/7351061","journal-title":"J Healthc Eng"},{"key":"2618_CR12","doi-asserted-by":"publisher","first-page":"6718029","DOI":"10.1155\/2021\/6718029","volume":"2021","author":"M Alsaffar","year":"2021","unstructured":"Alsaffar M, Alshammari A, Alshammari G, Aljaloud S, Almurayziq TS, Abdoon FM, Abebaw S (2021) Machine learning for ischemic heart disease diagnosis aided by evolutionary computing. Appl Bionics Biomech 2021:6718029. https:\/\/doi.org\/10.1155\/2021\/6718029","journal-title":"Appl Bionics Biomech"},{"key":"2618_CR13","doi-asserted-by":"publisher","first-page":"1658","DOI":"10.1109\/TBME.2018.2877649","volume":"66","author":"R Tao","year":"2019","unstructured":"Tao R, Zhang S, Huang X, Tao M, Ma J, Ma S, Zhang C, Zhang T, Tang F, Jianping Lu, Shen C, Xie X (2019) Magnetocardiography-based ischemic heart disease detection and localization using machine learning methods. IEEE Trans Biomed Eng 66:1658\u20131667. https:\/\/doi.org\/10.1109\/TBME.2018.2877649","journal-title":"IEEE Trans Biomed Eng"},{"key":"2618_CR14","doi-asserted-by":"publisher","first-page":"5980","DOI":"10.1109\/EMBC44109.2020.9176447","volume":"2020","author":"P Pal","year":"2020","unstructured":"Pal P, Ghosh S, Chattopadhyay BP, Kumar Saha K, Mahadevappa M (2020) Screening of ischemic heart disease based on PPG signals using machine learning techniques. Annu Int Conf IEEE Eng Med Biol Soc 2020:5980\u20135983. https:\/\/doi.org\/10.1109\/EMBC44109.2020.9176447","journal-title":"Annu Int Conf IEEE Eng Med Biol Soc"},{"key":"2618_CR15","doi-asserted-by":"publisher","first-page":"841","DOI":"10.3389\/fphys.2019.00841","volume":"10","author":"J Rodriguez","year":"2019","unstructured":"Rodriguez J, Schulz S, Giraldo BF, Voss A (2019) Risk stratification in idiopathic dilated cardiomyopathy patients using cardiovascular coupling analysis. Front Physiol 10:841. https:\/\/doi.org\/10.3389\/fphys.2019.00841","journal-title":"Front Physiol"},{"issue":"3","key":"2618_CR16","first-page":"18","volume":"2","author":"A Liaw","year":"2002","unstructured":"Liaw A, Wiener M (2002) Classification and Regression by randomForest. R News 2(3):18\u201322","journal-title":"R News"},{"key":"2618_CR17","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1016\/0893-6080(90)90049-Q","volume":"3","author":"DF Specht","year":"1990","unstructured":"Specht DF (1990) Probabilistic neural networks. Neural Netw 3:109\u2013118. https:\/\/doi.org\/10.1016\/0893-6080(90)90049-Q","journal-title":"Neural Netw"},{"key":"2618_CR18","doi-asserted-by":"crossref","unstructured":"Basu Roy S, Teredesai A, Zolfaghar K, Liu R, Hazel D, Newman S, Marinez A (2015) Dynamic hierarchical classification for patient risk-of-readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, USA, pp 1691\u20131700. https:\/\/dl.acm.org\/doi\/10.1145\/2783258.2788585","DOI":"10.1145\/2783258.2788585"},{"key":"2618_CR19","doi-asserted-by":"publisher","first-page":"229","DOI":"10.1016\/j.jbi.2015.05.016","volume":"56","author":"J Futoma","year":"2015","unstructured":"Futoma J, Morris J, Lucas J (2015) A comparison of models for predicting early hospital readmissions. J Biomed Inform 56:229\u2013238. https:\/\/doi.org\/10.1016\/j.jbi.2015.05.016","journal-title":"J Biomed Inform"},{"key":"2618_CR20","doi-asserted-by":"publisher","first-page":"e1379","DOI":"10.1002\/widm.1379","volume":"10","author":"G Stiglic","year":"2020","unstructured":"Stiglic G, Kocbek P, Fijacko N, Zitnik M, Verbert K, Cilar L (2020) Interpretability of machine learning-based prediction models in healthcare. WIREs Data Min Knowl Discovery 10:e1379. https:\/\/doi.org\/10.1002\/widm.1379","journal-title":"WIREs Data Min Knowl Discovery"},{"key":"2618_CR21","volume-title":"Classification and regression trees","author":"L Breiman","year":"1984","unstructured":"Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Routledge, Boca Raton"},{"key":"2618_CR22","doi-asserted-by":"publisher","unstructured":"Ahmad MA, Eckert C, Teredesai A (2018) Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. Association for Computing Machinery, New York, NY, USA, pp 559\u2013560. https:\/\/doi.org\/10.1145\/3233547.3233667","DOI":"10.1145\/3233547.3233667"},{"key":"2618_CR23","doi-asserted-by":"publisher","first-page":"407","DOI":"10.1093\/eurheartj\/ehz425","volume":"41","author":"J Knuuti","year":"2020","unstructured":"Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, Prescott E, Storey RF, Deaton C, Cuisset T, Agewall S, Dickstein K, Edvardsen T, Escaned J, Gersh BJ, Svitil P, Gilard M, Hasdai D, Hatala R, Mahfoud F, Masip J, Muneretto C, Valgimigli M, Achenbach S, Bax JJ, ESC Scientific Document Group (2020) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407\u2013477. https:\/\/doi.org\/10.1093\/eurheartj\/ehz425","journal-title":"Eur Heart J"},{"key":"2618_CR24","doi-asserted-by":"publisher","unstructured":"Heart rate variability: standards of measurement, physiological interpretation and clinical use Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Circulation 93:1043\u20131065. https:\/\/doi.org\/10.1161\/01.CIR.93.5.1043","DOI":"10.1161\/01.CIR.93.5.1043"},{"key":"2618_CR25","doi-asserted-by":"publisher","first-page":"704","DOI":"10.1016\/0002-8703(92)90510-3","volume":"123","author":"MA Woo","year":"1992","unstructured":"Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM (1992) Patterns of beat-to-beat heart rate variability in advanced heart failure. Am Heart J 123:704\u2013710. https:\/\/doi.org\/10.1016\/0002-8703(92)90510-3","journal-title":"Am Heart J"},{"key":"2618_CR26","doi-asserted-by":"publisher","DOI":"10.1016\/0167-2789(88)90081-4","author":"T Higuchi","year":"1988","unstructured":"Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D. https:\/\/doi.org\/10.1016\/0167-2789(88)90081-4","journal-title":"Physica D"},{"key":"2618_CR27","unstructured":"Cusenza M, Accardo A, D\u2019Addio G, Corbi G (2010) Relationship between fractal dimension and power-law exponent of heart rate variability in normal and heart failure subjects. Computing in Cardiology, 2010, pp 935\u2013938"},{"key":"2618_CR28","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.echo.2014.10.003","volume":"28","author":"RM Lang","year":"2015","unstructured":"Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt J-U (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1-39.e14. https:\/\/doi.org\/10.1016\/j.echo.2014.10.003","journal-title":"J Am Soc Echocardiogr"},{"key":"2618_CR29","doi-asserted-by":"publisher","unstructured":"Accardo A, Silveri G, Merlo M, Restivo L, Aj\u010devi\u0107 M, Sinagra G (2020) Detection of subjects with ischemic heart disease by using machine learning technique based on heart rate total variability parameters. Physiol Meas 41:11.\u00a0https:\/\/doi.org\/10.1088\/1361-6579\/abc321","DOI":"10.1088\/1361-6579\/abc321"},{"key":"2618_CR30","doi-asserted-by":"publisher","unstructured":"Dua S, Du X, Sree SV, Ahamed VIT (2012) Novel classification of coronary artery disease using heart rate variability analysis. J Mech Med Biol 12(04):1240017.\u00a0https:\/\/doi.org\/10.1142\/S0219519412400179","DOI":"10.1142\/S0219519412400179"},{"key":"2618_CR31","doi-asserted-by":"publisher","unstructured":"Mahesh V, Kandaswamy A, Vimal C, Sathish B (2009) Cardiac disease classification using heart rate signals. Int J Electron Healthc 5:211\u2013230.\u00a0https:\/\/doi.org\/10.1504\/ijeh.2010.034173","DOI":"10.1504\/ijeh.2010.034173"},{"key":"2618_CR32","first-page":"1396","volume":"29","author":"M Thirugnanam","year":"2020","unstructured":"Thirugnanam M, Santhoshi PM (2020) Hybrid feature extraction and stacking based ensemble classifier model for cardiomyopathy classification. Int J Adv Sci Technol 29:1396\u20131413","journal-title":"Int J Adv Sci Technol"},{"key":"2618_CR33","doi-asserted-by":"publisher","first-page":"799","DOI":"10.1093\/oxfordjournals.eurheartj.a060999","volume":"16","author":"T Tanabe","year":"1995","unstructured":"Tanabe T, Iwamoto T, Fusegawa Y, Yoshioka K, Shiina Y (1995) Alterations of sympathovagal balance in patients with hypertrophic and dilated cardiomyopathies assessed by spectral analysis of RR interval variability. Eur Heart J 16:799\u2013807. https:\/\/doi.org\/10.1093\/oxfordjournals.eurheartj.a060999","journal-title":"Eur Heart J"},{"key":"2618_CR34","doi-asserted-by":"publisher","first-page":"7","DOI":"10.1016\/j.cpcardiol.2012.07.003","volume":"38","author":"D Fairweather","year":"2013","unstructured":"Fairweather D, Cooper LT, Blauwet LA (2013) Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr Probl Cardiol 38:7\u201346. https:\/\/doi.org\/10.1016\/j.cpcardiol.2012.07.003","journal-title":"Curr Probl Cardiol"},{"key":"2618_CR35","doi-asserted-by":"publisher","first-page":"362","DOI":"10.1111\/joim.12944","volume":"286","author":"D Reichart","year":"2019","unstructured":"Reichart D, Magnussen C, Zeller T, Blankenberg S (2019) Dilated cardiomyopathy: from epidemiologic to genetic phenotypes. J Intern Med 286:362\u2013372. https:\/\/doi.org\/10.1111\/joim.12944","journal-title":"J Intern Med"},{"key":"2618_CR36","doi-asserted-by":"crossref","unstructured":"Krstacic G, Krstacic A, Martinis M, Vargovic E, Knezevic A, Smalcelj A, Jembrek-Gostovic M, Gamberger D, Smuc T (2002) Non-linear analysis of heart rate variability in patients with coronary heart disease. In: Computers in Cardiology. pp 673\u2013675","DOI":"10.1109\/CIC.2002.1166862"},{"key":"2618_CR37","doi-asserted-by":"publisher","first-page":"405","DOI":"10.2459\/JCM.0000000000001048","volume":"22","author":"A Accardo","year":"2021","unstructured":"Accardo A, Merlo M, Silveri G, Del Popolo L, Dalla Libera L, Restivo L, Cinquetti M, Cannat\u00e0 A, Sinagra G (2021) Influence of ageing on circadian rhythm of heart rate variability in healthy subjects. J Cardiovasc Med (Hagerstown) 22:405\u2013413. https:\/\/doi.org\/10.2459\/JCM.0000000000001048","journal-title":"J Cardiovasc Med (Hagerstown)"},{"key":"2618_CR38","doi-asserted-by":"publisher","first-page":"e0257660","DOI":"10.1371\/journal.pone.0257660","volume":"16","author":"A Accardo","year":"2021","unstructured":"Accardo A, Silveri G, Aj\u010devi\u0107 M, Miladinovi\u0107 A, Pascazio L (2021) Influence of smoking and other cardiovascular risk factors on heart rate circadian rhythm in normotensive and hypertensive subjects. PLoS ONE 16:e0257660. https:\/\/doi.org\/10.1371\/journal.pone.0257660","journal-title":"PLoS ONE"},{"key":"2618_CR39","doi-asserted-by":"publisher","first-page":"2912","DOI":"10.1016\/j.procs.2021.09.062","volume":"192","author":"A Miladinovi\u0107","year":"2021","unstructured":"Miladinovi\u0107 A, Aj\u010devi\u0107 M, Siveri G, Liguori L, Pascazio L, Accardo A (2021) Ambulatory blood pressure monitoring versus office blood pressure measurement: are there sex differences? Procedia Computer Science 192:2912\u20132918. https:\/\/doi.org\/10.1016\/j.procs.2021.09.062","journal-title":"Procedia Computer Science"}],"container-title":["Medical & Biological Engineering & Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-022-02618-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11517-022-02618-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-022-02618-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,8,10]],"date-time":"2022-08-10T05:17:26Z","timestamp":1660108646000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11517-022-02618-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,9]]},"references-count":39,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2022,9]]}},"alternative-id":["2618"],"URL":"https:\/\/doi.org\/10.1007\/s11517-022-02618-9","relation":{},"ISSN":["0140-0118","1741-0444"],"issn-type":[{"value":"0140-0118","type":"print"},{"value":"1741-0444","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,7,9]]},"assertion":[{"value":"30 November 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 June 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 July 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}