{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:16:50Z","timestamp":1740143810156,"version":"3.37.3"},"reference-count":33,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Med Biol Eng Comput"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1007\/s11517-022-02537-9","type":"journal-article","created":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T07:02:36Z","timestamp":1646118156000},"page":"1099-1110","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Effective residual convolutional neural network for Chagas disease parasite segmentation"],"prefix":"10.1007","volume":"60","author":[{"given":"Allan","family":"Ojeda-Pat","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6512-1060","authenticated-orcid":false,"given":"Anabel","family":"Martin-Gonzalez","sequence":"additional","affiliation":[]},{"given":"Carlos","family":"Brito-Loeza","sequence":"additional","affiliation":[]},{"given":"Hugo","family":"Ruiz-Pi\u00f1a","sequence":"additional","affiliation":[]},{"given":"Daniel","family":"Ruz-Suarez","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,3,1]]},"reference":[{"key":"2537_CR1","unstructured":"World Health Organization. https:\/\/www.who.int\/en\/news-room\/fact-sheets\/detail\/chagas-disease-(american-trypanosomiasis). Accessed: 2020\u201305\u201311"},{"issue":"07","key":"2537_CR2","first-page":"141","volume":"56","author":"Centers for Disease Control and Prevention","year":"2007","unstructured":"Centers for Disease Control and Prevention (2007) Blood donor screening for Chagas disease\u2013United States, 2006\u20132007. Morb Mortal Wkly Rep (MMWR) 56(07):141\u2013143","journal-title":"Morb Mortal Wkly Rep (MMWR)"},{"key":"2537_CR3","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1016\/j.actatropica.2016.01.002","volume":"156","author":"EE Conners","year":"2016","unstructured":"Conners EE, Vinetz JM, Weeks JR, Brouwer KC (2016) A global systematic review of Chagas disease prevalence among migrants. Acta Trop 156:68\u201378. https:\/\/doi.org\/10.1016\/j.actatropica.2016.01.002","journal-title":"Acta Trop"},{"key":"2537_CR4","unstructured":"World Health Organization. Chagas disease American trypanosomiasis, https:\/\/www.who.int\/chagas\/disease\/en\/). Accessed: 2020\u201305\u201304"},{"key":"2537_CR5","unstructured":"Centers for Disease Control and Prevention. Chagas Disease. https:\/\/www.cdc.gov\/parasites\/chagas\/. Accessed: 2020\u201301\u201305"},{"key":"2537_CR6","doi-asserted-by":"publisher","first-page":"151","DOI":"10.15406\/jmen.2018.06.00207","volume":"6","author":"RG Ballesteros","year":"2018","unstructured":"Ballesteros RG, Mart\u00ednez CI, Jim\u00e9nez RT, Antonio CA (2018) Chagas disease: an overview of diagnosis. J Microbiol Experimentation 6:151\u2013157. https:\/\/doi.org\/10.15406\/jmen.2018.06.00207","journal-title":"J Microbiol Experimentation"},{"issue":"2","key":"2537_CR7","doi-asserted-by":"publisher","first-page":"215","DOI":"10.4269\/ajtmh.1999.60.215","volume":"60","author":"N Anez","year":"1999","unstructured":"Anez N, Carrasco H, Parada H et al (1999) Acute Chagas\u2019 disease in western Venezuela: a clinical, seroparasitologic, and epidemiologic study. Am J Trop Med Hyg 60(2):215\u2013222","journal-title":"Am J Trop Med Hyg"},{"issue":"5","key":"2537_CR8","doi-asserted-by":"publisher","first-page":"1171","DOI":"10.1128\/jcm.34.5.1171-1175.1996","volume":"34","author":"LV Kirchhoff","year":"1996","unstructured":"Kirchhoff LV, Votava JR, Ochs DE et al (1996) Comparison of PCR and microscopic methods for detecting Trypanosoma cruzi. J Clin Microbiol 34(5):1171\u20131175","journal-title":"J Clin Microbiol"},{"issue":"1","key":"2537_CR9","first-page":"15","volume":"70","author":"R Storino","year":"2002","unstructured":"Storino R (2002) Consenso de enfermedad de Chagas, Topico I: Enfermedad de Chagas con parasitemia evidente. Rev Arg Cardiol 70(1):15\u201339","journal-title":"Rev Arg Cardiol"},{"key":"2537_CR10","doi-asserted-by":"publisher","first-page":"456","DOI":"10.1056\/NEJMra1410150","volume":"373","author":"C Bern","year":"2015","unstructured":"Bern C (2015) Chagas\u2019 disease. N Engl J Med 373:456\u2013466","journal-title":"N Engl J Med"},{"key":"2537_CR11","first-page":"6","volume":"8","author":"V Uc-Cetina","year":"2013","unstructured":"Uc-Cetina V, Brito-Loeza C, Ruiz-Pi\u00f1a H (2013) Chagas parasites detection through gaussian discriminant analysis. Abstraction Appl 8:6\u201317","journal-title":"Abstraction Appl"},{"issue":"3","key":"2537_CR12","doi-asserted-by":"publisher","first-page":"633","DOI":"10.1016\/j.cmpb.2013.07.013","volume":"112","author":"R Soberanis-Mukul","year":"2013","unstructured":"Soberanis-Mukul R, Uc-Cetina V, Brito-Loeza C, Ruiz-Pi\u00f1a H (2013) An automatic algorithm for the detection of Trypanosoma cruzi parasites in blood sample images. Comput Methods Programs Biomed 112(3):633\u2013639. https:\/\/doi.org\/10.1016\/j.cmpb.2013.07.013","journal-title":"Comput Methods Programs Biomed"},{"key":"2537_CR13","unstructured":"Soberanis-Mukul R (2014) Algoritmos de segmentaci\u00f3n de Trypanosoma cruzi en im\u00e1genes de muestras sanguineas, Master\u2019s thesis, Universidad Aut\u00f3noma de Yucat\u00e1n"},{"key":"2537_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2015\/139681","volume":"2015","author":"V Uc-Cetina","year":"2015","unstructured":"Uc-Cetina V, Brito-Loeza C, Ruiz-Pi\u00f1a H (2015) Chagas parasite detection in blood images using adaboost. Comput Math Methods Med 2015:1\u201313. https:\/\/doi.org\/10.1155\/2015\/139681","journal-title":"Comput Math Methods Med"},{"key":"2537_CR15","doi-asserted-by":"publisher","unstructured":"Latif J, Xiao C, Imran A, Tu S (2019) Medical imaging using machine learning and deep learning algorithms: a review. In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), p 1\u20135. https:\/\/doi.org\/10.1109\/ICOMET.2019.8673502","DOI":"10.1109\/ICOMET.2019.8673502"},{"key":"2537_CR16","doi-asserted-by":"publisher","unstructured":"Kamal-Alsheref F, Hassan W (2019) Blood diseases detection using classical machine learning algorithms. Int J Adv Comput Sci Appl 10. https:\/\/doi.org\/10.14569\/IJACSA.2019.0100712","DOI":"10.14569\/IJACSA.2019.0100712"},{"key":"2537_CR17","doi-asserted-by":"publisher","unstructured":"Chen X, Williams B, Vallabhaneni S, Czanner G, Williams R, Zheng Y (2019) Learning active contour models for medical image segmentation. 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https:\/\/doi.org\/10.1109\/CVPR.2019.01190","DOI":"10.1109\/CVPR.2019.01190"},{"key":"2537_CR18","doi-asserted-by":"publisher","unstructured":"Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015, vol. 9351, pp. 234\u2013241. https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"2537_CR19","doi-asserted-by":"publisher","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https:\/\/doi.org\/10.1109\/CVPR.2016.90","DOI":"10.1109\/CVPR.2016.90"},{"key":"2537_CR20","unstructured":"Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In 2015 International Conference on Learning Representations (ICLR)"},{"key":"2537_CR21","doi-asserted-by":"publisher","unstructured":"Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).\u00a0https:\/\/doi.org\/10.1109\/CVPR.2015.7298594","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"2537_CR22","unstructured":"M. Telgarsky (2016) Benefits of depth in neural networks, JMLR: Workshop and Conference Proceedings 49:1\u201323"},{"key":"2537_CR23","doi-asserted-by":"publisher","unstructured":"Zhang K, Sun M, Han T, Yuan X, Guo L, Liu T (2018) Residual networks of residual networks: multilevel residual networks. In IEEE Trans Cir Syst Video Technol 28(6): 1303-1314. https:\/\/doi.org\/10.1109\/TCSVT.2017.2654543","DOI":"10.1109\/TCSVT.2017.2654543"},{"key":"2537_CR24","doi-asserted-by":"publisher","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. Comp Vis \u2013 ECCV 2016 9908. https:\/\/doi.org\/10.1007\/978-3-319-46493-0_38","DOI":"10.1007\/978-3-319-46493-0_38"},{"key":"2537_CR25","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2018.2802944","author":"Z Zhang","year":"2017","unstructured":"Zhang Z, Liu Q (2017) Road extraction by deep residual U-Net. IEEE Geosci Remote Sens Lett. https:\/\/doi.org\/10.1109\/LGRS.2018.2802944","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"2537_CR26","doi-asserted-by":"publisher","unstructured":"Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C (2016) The importance of skip connections in biomedical image segmentation. In: Deep Learning and Data Labeling for Medical Applications. https:\/\/doi.org\/10.1007\/978-3-319-46976-8_19","DOI":"10.1007\/978-3-319-46976-8_19"},{"key":"2537_CR27","doi-asserted-by":"publisher","first-page":"014004","DOI":"10.1088\/1361-6420\/aa9a90","volume":"34","author":"E Haber","year":"2017","unstructured":"Haber E, Ruthotto L (2017) Stable architectures for deep neural networks. Inverse Prob 34:014004. https:\/\/doi.org\/10.1088\/1361-6420\/aa9a90","journal-title":"Inverse Prob"},{"key":"2537_CR28","unstructured":"Lu Y, Zhong A, Li Q, Dong B (2018) Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. In 35th International Conference on Machine Learning, ICML 2018, vol. 7, pp. 5181\u20135190. Taken from\u00a0https:\/\/arxiv.org\/abs\/1710.10121.\u00a0Accessed 5 May\u00a02020"},{"key":"2537_CR29","unstructured":"Sauer T (2018) Numerical analysis, 3rd edition. Pearson, Hoboken, New Jersey"},{"key":"2537_CR30","unstructured":"Chen R, Rubanova Y, Bettencourt J, Duvenaud D (2018) Neural ordinary differential equations. In 32nd Conference on Neural Information Processing Systems. Taken from https:\/\/arxiv.org\/abs\/1806.07366. Accessed\u00a02020\/01\/07"},{"key":"2537_CR31","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1109\/72.279181","volume":"5","author":"Y Bengio","year":"1994","unstructured":"Bengio Y, Simard P, Frasconi D (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Networks 5:157\u2013166. https:\/\/doi.org\/10.1109\/72.279181","journal-title":"IEEE Trans Neural Networks"},{"key":"2537_CR32","doi-asserted-by":"crossref","unstructured":"S\u00fcli E, Mayers D (2003) An introduction to numerical analysis. Cambridge University Press, New York","DOI":"10.1017\/CBO9780511801181"},{"issue":"4","key":"2537_CR33","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1016\/j.ipm.2009.03.002","volume":"45","author":"M Sokolova","year":"2009","unstructured":"Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45(4):427\u2013437","journal-title":"Inf Process Manag"}],"container-title":["Medical & Biological Engineering & Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-022-02537-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11517-022-02537-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-022-02537-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,19]],"date-time":"2022-03-19T00:10:51Z","timestamp":1647648651000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11517-022-02537-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3,1]]},"references-count":33,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2022,4]]}},"alternative-id":["2537"],"URL":"https:\/\/doi.org\/10.1007\/s11517-022-02537-9","relation":{},"ISSN":["0140-0118","1741-0444"],"issn-type":[{"type":"print","value":"0140-0118"},{"type":"electronic","value":"1741-0444"}],"subject":[],"published":{"date-parts":[[2022,3,1]]},"assertion":[{"value":"23 February 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 January 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 March 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing of interests"}}]}}