{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:32:47Z","timestamp":1732041167456},"reference-count":43,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2022,1,27]],"date-time":"2022-01-27T00:00:00Z","timestamp":1643241600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,27]],"date-time":"2022-01-27T00:00:00Z","timestamp":1643241600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Med Biol Eng Comput"],"published-print":{"date-parts":[[2022,3]]},"DOI":"10.1007\/s11517-021-02487-8","type":"journal-article","created":{"date-parts":[[2022,1,27]],"date-time":"2022-01-27T00:03:36Z","timestamp":1643241816000},"page":"633-642","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":22,"title":["The adoption of deep learning interpretability techniques on diabetic retinopathy analysis: a review"],"prefix":"10.1007","volume":"60","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1785-3689","authenticated-orcid":false,"given":"Wei Xiang","family":"Lim","sequence":"first","affiliation":[]},{"given":"ZhiYuan","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Amr","family":"Ahmed","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,27]]},"reference":[{"key":"2487_CR1","unstructured":"WHO. (2020). Diabetes. Available: https:\/\/www.who.int\/news-room\/fact-sheets\/detail\/diabetes?fbclid=IwAR3prQE7gryQFNPvOhxDorCoIBHqcMFRSOHdHnO3pFN2Gb_V_ipxmQW9MDw"},{"issue":"11","key":"2487_CR2","doi-asserted-by":"publisher","first-page":"226","DOI":"10.1007\/s10916-018-1088-1","volume":"42","author":"SM Anwar","year":"2018","unstructured":"Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK (2018) Medical image analysis using convolutional neural networks: a review. J Med Syst 42(11):226","journal-title":"J Med Syst"},{"key":"2487_CR3","unstructured":"IDF. (2019). IDF Diabetes Atlas. Available: https:\/\/diabetesatlas.org\/en\/resources\/"},{"issue":"5","key":"2487_CR4","doi-asserted-by":"publisher","first-page":"640","DOI":"10.1001\/jamaophthalmol.2014.84","volume":"132","author":"A Sommer","year":"2014","unstructured":"Sommer A et al (2014) Challenges of ophthalmic care in the developing world. JAMA ophthalmology 132(5):640\u2013644","journal-title":"JAMA ophthalmology"},{"issue":"4","key":"2487_CR5","doi-asserted-by":"publisher","first-page":"588","DOI":"10.1136\/bjophthalmol-2019-314336","volume":"104","author":"S Resnikoff","year":"2020","unstructured":"Resnikoff S et al (2020) Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): will we meet the needs? Br J Ophthalmol 104(4):588\u2013592","journal-title":"Br J Ophthalmol"},{"issue":"6","key":"2487_CR6","doi-asserted-by":"publisher","first-page":"917","DOI":"10.1038\/s41433-019-0344-z","volume":"33","author":"WH Dean","year":"2019","unstructured":"Dean WH, Grant S, McHugh J, Bowes O, Spencer F (2019) Ophthalmology specialist trainee survey in the United Kingdom. Eye 33(6):917\u2013924","journal-title":"Eye"},{"issue":"1","key":"2487_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/sym11010001","volume":"11","author":"M Mateen","year":"2019","unstructured":"Mateen M, Wen J, Song S, Huang Z (2019) Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry 11(1):1","journal-title":"Symmetry"},{"issue":"22","key":"2487_CR8","doi-asserted-by":"publisher","first-page":"2402","DOI":"10.1001\/jama.2016.17216","volume":"316","author":"V Gulshan","year":"2016","unstructured":"Gulshan V et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402\u20132410","journal-title":"JAMA"},{"key":"2487_CR9","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1016\/j.inffus.2019.12.012","volume":"58","author":"AB Arrieta","year":"2020","unstructured":"Arrieta AB et al (2020) Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58:82\u2013115","journal-title":"Information Fusion"},{"issue":"1","key":"2487_CR10","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1145\/3359786","volume":"63","author":"M Du","year":"2019","unstructured":"Du M, Liu N, Hu X (2019) Techniques for interpretable machine learning. Commun ACM 63(1):68\u201377","journal-title":"Commun ACM"},{"issue":"5","key":"2487_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3236009","volume":"51","author":"R Guidotti","year":"2018","unstructured":"Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D (2018) A survey of methods for explaining black box models. ACM computing surveys (CSUR) 51(5):1\u201342","journal-title":"ACM computing surveys (CSUR)"},{"issue":"5","key":"2487_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3234150","volume":"51","author":"S Pouyanfar","year":"2018","unstructured":"Pouyanfar S et al (2018) A survey on deep learning: algorithms, techniques, and applications. ACM Computing Surveys (CSUR) 51(5):1\u201336","journal-title":"ACM Computing Surveys (CSUR)"},{"key":"2487_CR13","doi-asserted-by":"crossref","unstructured":"Kermany DS, et al. (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172 5 1122\u20131131. e9","DOI":"10.1016\/j.cell.2018.02.010"},{"key":"2487_CR14","first-page":"23","volume":"2429","author":"H Pratt","year":"2019","unstructured":"Pratt H, Coenen F, Harding S, Broadbent D, Zheng Y (2019) Feature visualisation of classification of diabetic retinopathy using a convolutional neural network. CEUR Workshop Proceedings 2429:23\u201329","journal-title":"CEUR Workshop Proceedings"},{"key":"2487_CR15","doi-asserted-by":"crossref","unstructured":"Tu Z, et al (2020) SUNet: a lesion regularized model for simultaneous diabetic retinopathy and diabetic macular edema grading in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) 1378\u20131382: IEEE","DOI":"10.1109\/ISBI45749.2020.9098673"},{"key":"2487_CR16","doi-asserted-by":"crossref","unstructured":"Gondal WM, K\u00f6hler JM, Grzeszick R, Fink GA, Hirsch M (2017) Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. in 2017 IEEE International Conference on Image Processing (ICIP) 2069\u20132073: IEEE","DOI":"10.1109\/ICIP.2017.8296646"},{"issue":"9","key":"2487_CR17","doi-asserted-by":"publisher","first-page":"1410","DOI":"10.1016\/j.ophtha.2018.02.037","volume":"125","author":"F Grassmann","year":"2018","unstructured":"Grassmann F et al (2018) A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 125(9):1410\u20131420","journal-title":"Ophthalmology"},{"key":"2487_CR18","doi-asserted-by":"publisher","first-page":"178","DOI":"10.1016\/j.media.2017.04.012","volume":"39","author":"G Quellec","year":"2017","unstructured":"Quellec G, Charri\u00e8re K, Boudi Y, Cochener B, Lamard M (2017) Deep image mining for diabetic retinopathy screening. Med Image Anal 39:178\u2013193","journal-title":"Med Image Anal"},{"key":"2487_CR19","doi-asserted-by":"crossref","unstructured":"de La Torre J, Valls A, Puig D (2019) A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing","DOI":"10.1016\/j.neucom.2018.07.102"},{"issue":"7","key":"2487_CR20","doi-asserted-by":"publisher","first-page":"962","DOI":"10.1016\/j.ophtha.2017.02.008","volume":"124","author":"R Gargeya","year":"2017","unstructured":"Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962\u2013969","journal-title":"Ophthalmology"},{"key":"2487_CR21","doi-asserted-by":"publisher","first-page":"25891","DOI":"10.1109\/ACCESS.2019.2893635","volume":"7","author":"D Kumar","year":"2019","unstructured":"Kumar D, Taylor GW, Wong A (2019) Discovery radiomics with CLEAR-DR: interpretable computer aided diagnosis of diabetic retinopathy. IEEE Access 7:25891\u201325896","journal-title":"IEEE Access"},{"issue":"4","key":"2487_CR22","doi-asserted-by":"publisher","first-page":"552","DOI":"10.1016\/j.ophtha.2018.11.016","volume":"126","author":"R Sayres","year":"2019","unstructured":"Sayres R et al (2019) Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology 126(4):552\u2013564","journal-title":"Ophthalmology"},{"key":"2487_CR23","unstructured":"Wang Z, Yang J (2018) Diabetic retinopathy detection via deep convolutional networks for discriminative localization and visual explanation,\" in Workshops at the thirty-second AAAI conference on artificial intelligence"},{"key":"2487_CR24","doi-asserted-by":"crossref","unstructured":"Jiang H, et al. (2020) A multi-label deep learning model with interpretable grad-CAM for diabetic retinopathy classification. in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 1560\u20131563: IEEE","DOI":"10.1109\/EMBC44109.2020.9175884"},{"key":"2487_CR25","first-page":"169","volume-title":"\"Gradient-based attribution methods,\" in Explainable AI: Interpreting","author":"M Ancona","year":"2019","unstructured":"Ancona M, Ceolini E, \u00d6ztireli C, Gross M (2019) \u201cGradient-based attribution methods,\u201d in Explainable AI: Interpreting. Springer, Explaining and Visualizing Deep Learning, pp 169\u2013191"},{"key":"2487_CR26","doi-asserted-by":"crossref","unstructured":"Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks,\" in European conference on computer vision 818\u2013833: Springer","DOI":"10.1007\/978-3-319-10590-1_53"},{"key":"2487_CR27","unstructured":"Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034"},{"key":"2487_CR28","doi-asserted-by":"crossref","unstructured":"Fong R, Vedaldi A (2019) Explanations for attributing deep neural network predictions,\" in Explainable ai: Interpreting, explaining and visualizing deep learning: Springer 149\u2013167","DOI":"10.1007\/978-3-030-28954-6_8"},{"key":"2487_CR29","doi-asserted-by":"crossref","unstructured":"Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition 2921\u20132929","DOI":"10.1109\/CVPR.2016.319"},{"key":"2487_CR30","doi-asserted-by":"crossref","unstructured":"Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision 618\u2013626.","DOI":"10.1109\/ICCV.2017.74"},{"key":"2487_CR31","first-page":"193","volume-title":"\"Layer-wise relevance propagation: an overview,\" in Explainable AI: Interpreting","author":"G Montavon","year":"2019","unstructured":"Montavon G, Binder A, Lapuschkin S, Samek W, M\u00fcller K-R (2019) \u201cLayer-wise relevance propagation: an overview,\u201d in Explainable AI: Interpreting. Springer, Explaining and Visualizing Deep Learning, pp 193\u2013209"},{"key":"2487_CR32","unstructured":"Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. arXiv preprint arXiv:1703.01365"},{"issue":"2","key":"2487_CR33","doi-asserted-by":"publisher","first-page":"672","DOI":"10.3390\/app11020672","volume":"11","author":"J Born","year":"2021","unstructured":"Born J et al (2021) Accelerating detection of lung pathologies with explainable ultrasound image analysis. Appl Sci 11(2):672","journal-title":"Appl Sci"},{"issue":"10","key":"2487_CR34","doi-asserted-by":"publisher","first-page":"2934","DOI":"10.3390\/cancers12102934","volume":"12","author":"YW Jin","year":"2020","unstructured":"Jin YW, Jia S, Ashraf AB, Hu P (2020) Integrative data augmentation with U-Net segmentation masks improves detection of lymph node metastases in breast cancer patients. Cancers 12(10):2934","journal-title":"Cancers"},{"issue":"4","key":"2487_CR35","doi-asserted-by":"publisher","first-page":"927","DOI":"10.1007\/s10044-017-0630-y","volume":"20","author":"TA Soomro","year":"2017","unstructured":"Soomro TA, Gao J, Khan T, Hani AFM, Khan MA, Paul M (2017) Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: a survey. Pattern Anal Appl 20(4):927\u2013961","journal-title":"Pattern Anal Appl"},{"issue":"8","key":"2487_CR36","doi-asserted-by":"publisher","first-page":"1211","DOI":"10.1049\/iet-ipr.2018.6212","volume":"13","author":"A Raj","year":"2019","unstructured":"Raj A, Tiwari AK, Martini MG (2019) Fundus image quality assessment: survey, challenges, and future scope. IET Image Proc 13(8):1211\u20131224","journal-title":"IET Image Proc"},{"issue":"1","key":"2487_CR37","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1186\/s40537-019-0197-0","volume":"6","author":"C Shorten","year":"2019","unstructured":"Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. Journal of Big Data 6(1):60","journal-title":"Journal of Big Data"},{"key":"2487_CR38","doi-asserted-by":"crossref","unstructured":"Lin G-M, et al (2018) Transforming retinal photographs to entropy images in deep learning to improve automated detection for diabetic retinopathy. J Ophthalmol vol. 2018","DOI":"10.1155\/2018\/2159702"},{"key":"2487_CR39","unstructured":"D\u00edaz Garc\u00eda J, Brunet Crosa P, Navazo \u00c1lvaro I, V\u00e1zquez Alcocer PP (2017) Downsampling methods for medical datasets. in Proceedings of the International conferences Computer Graphics, Visualization, Computer Vision and Image Processing 2017 and Big Data Analytics, Data Mining and Computational Intelligence 2017: Lisbon, Portugal, July 21\u201323, 2017 12\u201320: IADIS Press"},{"key":"2487_CR40","unstructured":"Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B (2018) Sanity checks for saliency maps. in Advances in Neural Information Processing Systems 9505\u20139515"},{"issue":"2","key":"2487_CR41","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1007\/s10278-011-9428-4","volume":"25","author":"TM Deserno","year":"2012","unstructured":"Deserno TM, Welter P, Horsch A (2012) Towards a repository for standardized medical image and signal case data annotated with ground truth. J Digit Imaging 25(2):213\u2013226","journal-title":"J Digit Imaging"},{"key":"2487_CR42","unstructured":"Shanmugamani R (2020). Deep learning for computer vision. Available: https:\/\/www.oreilly.com\/library\/view\/deep-learning-for\/9781788295628\/a5ce2fa2-8c67-4ead-a9bd-a2d07b5f3fa8.xhtml?fbclid=IwAR3pu9MWA93Q1K62qbcJPgpbnPvjKqAljyyprDEUnr8U5D1E9JeGMr0Mwqg"},{"key":"2487_CR43","first-page":"243","volume-title":"\"Comparing the interpretability of deep networks via network dissection,\" in Explainable AI: Interpreting","author":"B Zhou","year":"2019","unstructured":"Zhou B, Bau D, Oliva A, Torralba A (2019) \u201cComparing the interpretability of deep networks via network dissection,\u201d in Explainable AI: Interpreting. Springer, Explaining and Visualizing Deep Learning, pp 243\u2013252"}],"container-title":["Medical & Biological Engineering & Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-021-02487-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11517-021-02487-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-021-02487-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,2,17]],"date-time":"2022-02-17T06:17:06Z","timestamp":1645078626000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11517-021-02487-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,27]]},"references-count":43,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2022,3]]}},"alternative-id":["2487"],"URL":"https:\/\/doi.org\/10.1007\/s11517-021-02487-8","relation":{},"ISSN":["0140-0118","1741-0444"],"issn-type":[{"value":"0140-0118","type":"print"},{"value":"1741-0444","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,1,27]]},"assertion":[{"value":"5 January 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 November 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 January 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}