{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,8]],"date-time":"2025-04-08T21:22:59Z","timestamp":1744147379880,"version":"3.37.3"},"reference-count":51,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2022,1,13]],"date-time":"2022-01-13T00:00:00Z","timestamp":1642032000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,13]],"date-time":"2022-01-13T00:00:00Z","timestamp":1642032000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Med Biol Eng Comput"],"published-print":{"date-parts":[[2022,3]]},"DOI":"10.1007\/s11517-021-02473-0","type":"journal-article","created":{"date-parts":[[2022,1,13]],"date-time":"2022-01-13T23:02:46Z","timestamp":1642114966000},"page":"643-662","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":82,"title":["InSiNet: a deep convolutional approach to skin cancer detection and segmentation"],"prefix":"10.1007","volume":"60","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2696-2446","authenticated-orcid":false,"given":"Hatice Catal","family":"Reis","sequence":"first","affiliation":[]},{"given":"Veysel","family":"Turk","sequence":"additional","affiliation":[]},{"given":"Kourosh","family":"Khoshelham","sequence":"additional","affiliation":[]},{"given":"Serhat","family":"Kaya","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,13]]},"reference":[{"key":"2473_CR1","unstructured":"WHO, Cancer statistics according to the World Health Organization. https:\/\/www.who.int\/news-room\/fact-sheets\/detail\/cancer. Accessed 13 January 2021"},{"key":"2473_CR2","doi-asserted-by":"publisher","DOI":"10.1021\/acsanm.1c00779","author":"S Bajpai","year":"2021","unstructured":"Bajpai S, Tiwary SK, Sonker M et al (2021) Recent advances in nanoparticle-based cancer treatment: a review. ACS Appl Nano Mater. https:\/\/doi.org\/10.1021\/acsanm.1c00779","journal-title":"ACS Appl Nano Mater"},{"key":"2473_CR3","doi-asserted-by":"publisher","first-page":"111875","DOI":"10.1016\/j.biopha.2021.111875","volume":"141","author":"V Mansouri","year":"2021","unstructured":"Mansouri V, Beheshtizadeh N, Gharibshahian M, Sabouri L, Varzandeh M, Rezaei N (2021) Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother 141:111875. https:\/\/doi.org\/10.1016\/j.biopha.2021.111875","journal-title":"Biomed Pharmacother"},{"issue":"1","key":"2473_CR4","doi-asserted-by":"publisher","first-page":"3","DOI":"10.2174\/138161210789941847","volume":"16","author":"A Urruticoechea","year":"2010","unstructured":"Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16(1):3\u201310. https:\/\/doi.org\/10.2174\/138161210789941847","journal-title":"Curr Pharm Des"},{"key":"2473_CR5","unstructured":"Heller N, Bussmann E, Shah A, Dean J, Papanikolopoulos N (2018) Computer aided diagnosis of skin lesions from morphological features, Technical Report, 18-014.\u00a0https:\/\/hdl.handle.net\/11299\/216030. Accessed\u00a05 Mar 2021"},{"key":"2473_CR6","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-15-6067-5_65","volume-title":"Innovations in computational intelligence and computer vision Advances in Intelligent Systems and Computing","author":"R Garg","year":"2021","unstructured":"Garg R, Maheshwari S, Shukla A (2021) Decision support system for detection and classification of skin cancer using CNN. In: Sharma MK, Dhaka VS, Perumal T, Dey N, Tavares JMRS (eds) Innovations in computational intelligence and computer vision Advances in Intelligent Systems and Computing, vol 1189. Springer, Singapore. https:\/\/doi.org\/10.1007\/978-981-15-6067-5_65"},{"issue":"4","key":"2473_CR7","doi-asserted-by":"publisher","first-page":"785","DOI":"10.3390\/molecules26040785","volume":"26","author":"R Cassano","year":"2021","unstructured":"Cassano R, Cuconato M, Calviello G, Serini S, Trombino S (2021) Recent advances in nanotechnology for the treatment of melanoma. Molecules 26(4):785. https:\/\/doi.org\/10.3390\/molecules26040785","journal-title":"Molecules"},{"key":"2473_CR8","doi-asserted-by":"publisher","first-page":"114822","DOI":"10.1109\/ACCESS.2020.3003890","volume":"8","author":"MA Kassem","year":"2020","unstructured":"Kassem MA, Hosny KM, Fouad MM (2020) Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning. IEEE Access 8:114822\u2013114832. https:\/\/doi.org\/10.1109\/ACCESS.2020.3003890","journal-title":"IEEE Access"},{"key":"2473_CR9","doi-asserted-by":"publisher","unstructured":"Cevik E, Zengin K (2019) Classification of skin lesions in dermatoscopic images with deep convolution network, Eur J Sci Technol:309-318. https:\/\/doi.org\/10.31590\/ejosat.638247","DOI":"10.31590\/ejosat.638247"},{"key":"2473_CR10","doi-asserted-by":"publisher","first-page":"99633","DOI":"10.1109\/ACCESS.2020.2997710","volume":"8","author":"L Wei","year":"2020","unstructured":"Wei L, Ding K, Hu H (2020) Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network. IEEE Access 8:99633\u201399647. https:\/\/doi.org\/10.1109\/ACCESS.2020.2997710","journal-title":"IEEE Access"},{"key":"2473_CR11","doi-asserted-by":"publisher","unstructured":"Chaturvedi SS, Gupta K, Prasad PS (2020) Skin lesion analyser: an efficient seven-way multi-class skin cancer classification using mobilenet. In: International Conference on Advanced Machine Learning Technologies and Applications. pp 165-176. https:\/\/doi.org\/10.1007\/978-981-15-3383-9_15","DOI":"10.1007\/978-981-15-3383-9_15"},{"issue":"7","key":"2473_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10916-019-1334-1","volume":"43","author":"T Sreelatha","year":"2019","unstructured":"Sreelatha T, Subramanyam MV, Prasad MG (2019) Early detection of skin cancer using melanoma segmentation technique. J Med Syst 43(7):1\u20137. https:\/\/doi.org\/10.1007\/s10916-019-1334-1","journal-title":"J Med Syst"},{"issue":"8","key":"2473_CR13","doi-asserted-by":"publisher","first-page":"1229","DOI":"10.1038\/s41591-020-0942-0","volume":"26","author":"P Tschandl","year":"2020","unstructured":"Tschandl P, Rinner C, Apalla Z et al (2020) Human\u2013computer collaboration for skin cancer recognition. Nat Med 26(8):1229\u20131234. https:\/\/doi.org\/10.1038\/s41591-020-0942-0","journal-title":"Nat Med"},{"issue":"18","key":"2473_CR14","doi-asserted-by":"publisher","first-page":"9707","DOI":"10.3390\/ijms22189707","volume":"22","author":"TD Pop","year":"2021","unstructured":"Pop TD, Diaconeasa Z (2021) Recent advances in phenolic metabolites and skin cancer. Int J Mol Sci 22(18):9707. https:\/\/doi.org\/10.3390\/ijms22189707","journal-title":"Int J Mol Sci"},{"key":"2473_CR15","doi-asserted-by":"publisher","DOI":"10.1016\/j.jare.2021.06.014","author":"NH Khan","year":"2021","unstructured":"Khan NH, Mir M, Qian L et al (2021) Skin cancer biology and barriers to treatment: recent applications of polymeric micro\/nanostructures. J Adv Res. https:\/\/doi.org\/10.1016\/j.jare.2021.06.014","journal-title":"J Adv Res"},{"key":"2473_CR16","doi-asserted-by":"publisher","unstructured":"Yap MH, Goyal M, Osman F et al (2018) End-to-end breast ultrasound lesions recognition with a deep learning approach. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging. vol. 10578. International Society for Optics and Photonics. p 1057819. https:\/\/doi.org\/10.1117\/12.2293498","DOI":"10.1117\/12.2293498"},{"key":"2473_CR17","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1016\/j.media.2016.05.004","volume":"35","author":"M Havaei","year":"2017","unstructured":"Havaei M, Davy A, Warde-Farley D et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18\u201331. https:\/\/doi.org\/10.1016\/j.media.2016.05.004","journal-title":"Med Image Anal"},{"key":"2473_CR18","doi-asserted-by":"publisher","first-page":"3358","DOI":"10.1038\/s41598-019-40041-7","volume":"9","author":"JW Wei","year":"2019","unstructured":"Wei JW, Tafe LJ, Linnik YA, Vaickus LJ, Tomita N, Hassanpour S (2019) Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci Rep 9:3358. https:\/\/doi.org\/10.1038\/s41598-019-40041-7","journal-title":"Sci Rep"},{"key":"2473_CR19","doi-asserted-by":"publisher","unstructured":"Goyal M, Knackstedt T, Yan S, Hassanpour S (2020) Artificial intelligence-based image classification for diagnosis of skin cancer: challenges and opportunities. Comput Biol Med:104065.https:\/\/doi.org\/10.1016\/j.compbiomed.2020.104065","DOI":"10.1016\/j.compbiomed.2020.104065"},{"key":"2473_CR20","doi-asserted-by":"publisher","first-page":"92","DOI":"10.1016\/j.cviu.2017.04.002","volume":"164","author":"F Milletari","year":"2017","unstructured":"Milletari F, Ahmadi SA, Kroll C et al (2017) Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst 164:92\u2013102. https:\/\/doi.org\/10.1016\/j.cviu.2017.04.002","journal-title":"Comput Vis Image Underst"},{"key":"2473_CR21","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1016\/j.media.2018.07.008","volume":"49","author":"J Chmelik","year":"2018","unstructured":"Chmelik J, Jakubicek R, Walek P et al (2018) Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data. Med Image Anal 49:76\u201388. https:\/\/doi.org\/10.1016\/j.media.2018.07.008","journal-title":"Med Image Anal"},{"issue":"11","key":"2473_CR22","doi-asserted-by":"publisher","first-page":"969","DOI":"10.3390\/diagnostics10110969","volume":"10","author":"M Lucius","year":"2020","unstructured":"Lucius M, De All J, De All JA et al (2020) Deep neural frameworks improve the accuracy of general practitioners in the classification of pigmented skin lesions. Diagnostics 10(11):969. https:\/\/doi.org\/10.3390\/diagnostics10110969","journal-title":"Diagnostics"},{"key":"2473_CR23","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical image computing and computer-assisted intervention \u2013 MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention \u2013 MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham. https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"2473_CR24","unstructured":"Codella N, Rotemberg V, Tschandl P et al (2019) Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (isic). arXiv preprint arXiv:1902.03368"},{"key":"2473_CR25","doi-asserted-by":"publisher","first-page":"180161","DOI":"10.1038\/sdata.2018.161","volume":"5","author":"P Tschandl","year":"2018","unstructured":"Tschandl P, Rosendahl C, Kittler H (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5:180161. https:\/\/doi.org\/10.1038\/sdata.2018.161","journal-title":"Sci Data"},{"key":"2473_CR26","unstructured":"Combalia M, Codella NC, Rotemberg V et al (2019) BCN20000: dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288"},{"key":"2473_CR27","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1038\/s41597-021-00815-z","volume":"8","author":"V Rotemberg","year":"2021","unstructured":"Rotemberg V, Kurtansky N, Betz-Stablein B et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci Data 8:34. https:\/\/doi.org\/10.1038\/s41597-021-00815-z","journal-title":"Sci Data"},{"key":"2473_CR28","unstructured":"Open Source Computer Vision. https:\/\/docs.opencv.org\/3.4\/index.html. Accessed 15 January 2021"},{"issue":"3","key":"2473_CR29","doi-asserted-by":"publisher","first-page":"3144","DOI":"10.1007\/s11227-020-03389-6","volume":"77","author":"CT Lu","year":"2021","unstructured":"Lu CT, Wang LL, Shen JH, Lin JA (2021) Image enhancement using deep-learning fully connected neural network mean filter. J Supercomput 77(3):3144\u20133164. https:\/\/doi.org\/10.1007\/s11227-020-03389-6","journal-title":"J Supercomput"},{"key":"2473_CR30","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1007\/s13555-020-00372-0","volume":"10","author":"S Chan","year":"2020","unstructured":"Chan S, Reddy V, Myers B et al (2020) Machine learning in dermatology: current applications, opportunities, and limitations. Dermatol Ther (Heidelb) 10:365\u2013386. https:\/\/doi.org\/10.1007\/s13555-020-00372-0","journal-title":"Dermatol Ther (Heidelb)"},{"key":"2473_CR31","doi-asserted-by":"publisher","first-page":"105351","DOI":"10.1016\/j.cmpb.2020.105351","volume":"190","author":"MA Al-Masni","year":"2020","unstructured":"Al-Masni MA, Kim DH, Kim TS (2020) Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput Methods Programs Biomed 190:105351. https:\/\/doi.org\/10.1016\/j.cmpb.2020.105351","journal-title":"Comput Methods Programs Biomed"},{"key":"2473_CR32","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1016\/j.ejca.2019.07.019","volume":"120","author":"A Hekler","year":"2019","unstructured":"Hekler A, Utikal JS, Enk AH et al (2019) Superior skin cancer classification by the combination of human and artificial intelligence. Eur J Cancer 120:114\u2013121. https:\/\/doi.org\/10.1016\/j.ejca.2019.07.019","journal-title":"Eur J Cancer"},{"key":"2473_CR33","doi-asserted-by":"publisher","first-page":"101765","DOI":"10.1016\/j.compmedimag.2020.101765","volume":"84","author":"L Liu","year":"2020","unstructured":"Liu L, Mou L, Zhu XX, Mandal M (2020) Automatic skin lesion classification based on mid-level feature learning. Comput Med Imaging Graph 84:101765. https:\/\/doi.org\/10.1016\/j.compmedimag.2020.101765","journal-title":"Comput Med Imaging Graph"},{"key":"2473_CR34","doi-asserted-by":"publisher","first-page":"103545","DOI":"10.1016\/j.compbiomed.2019.103545","volume":"116","author":"AG Pacheco","year":"2020","unstructured":"Pacheco AG, Krohling RA (2020) The impact of patient clinical information on automated skin cancer detection. Comput Biol Med 116:103545. https:\/\/doi.org\/10.1016\/j.compbiomed.2019.103545","journal-title":"Comput Biol Med"},{"key":"2473_CR35","doi-asserted-by":"publisher","first-page":"191","DOI":"10.3389\/fmed.2019.00191","volume":"6","author":"Y Fujisawa","year":"2019","unstructured":"Fujisawa Y, Inoue S, Nakamura Y (2019) The possibility of deep learning-based, computer-aided skin tumor classifiers. Front Med 6:191. https:\/\/doi.org\/10.3389\/fmed.2019.00191","journal-title":"Front Med"},{"key":"2473_CR36","doi-asserted-by":"publisher","unstructured":"Pillay V, Hirasen D, Viriri S, Gwetu MV (2020) Macroscopic skin lesion segmentation using GrabCut. In International conference on computational collective intelligence. pp 528-539. https:\/\/doi.org\/10.1007\/978-3-030-63007-2_41","DOI":"10.1007\/978-3-030-63007-2_41"},{"key":"2473_CR37","doi-asserted-by":"publisher","unstructured":"Xu J, Mcpartlon M, Li J (2021) Improved protein structure prediction by deep learning irrespective of co-evolution information. Nat Mach Intell:1\u20139.https:\/\/doi.org\/10.1038\/s42256-021-00348-5","DOI":"10.1038\/s42256-021-00348-5"},{"issue":"1","key":"2473_CR38","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-70479-z","volume":"10","author":"KK Bressem","year":"2020","unstructured":"Bressem KK, Adams LC, Erxleben C, Hamm B, Niehues SM, Vahldiek JL (2020) Comparing different deep learning architectures for classification of chest radiographs. Sci Rep 10(1):1\u201316. https:\/\/doi.org\/10.1038\/s41598-020-70479-z","journal-title":"Sci Rep"},{"issue":"5","key":"2473_CR39","doi-asserted-by":"publisher","first-page":"2890","DOI":"10.1007\/s10489-020-02076-6","volume":"51","author":"MA Al-antari","year":"2021","unstructured":"Al-antari MA, Hua CH, Bang J, Lee S (2021) Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest x-ray images. Appl Intell 51(5):2890\u20132907. https:\/\/doi.org\/10.1007\/s10489-020-02076-6","journal-title":"Appl Intell"},{"issue":"1","key":"2473_CR40","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-021-83503-7","volume":"11","author":"G An","year":"2021","unstructured":"An G, Akiba M, Omodaka K, Nakazawa T, Yokota H (2021) Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images. Sci Rep 11(1):1\u20139. https:\/\/doi.org\/10.1038\/s41598-021-83503-7","journal-title":"Sci Rep"},{"issue":"1","key":"2473_CR41","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-78129-0","volume":"10","author":"YG Kim","year":"2020","unstructured":"Kim YG, Kim S, Cho CE et al (2020) Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections. Sci Rep 10(1):1\u20139. https:\/\/doi.org\/10.1038\/s41598-020-78129-0","journal-title":"Sci Rep"},{"issue":"1","key":"2473_CR42","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-021-88966-2","volume":"11","author":"TC Wu","year":"2021","unstructured":"Wu TC, Wang X, Li L, Bu Y, Umulis DM (2021) Automatic wavelet-based 3D nuclei segmentation and analysis for multicellular embryo quantification. Sci Rep 11(1):1\u201313. https:\/\/doi.org\/10.1038\/s41598-021-88966-2","journal-title":"Sci Rep"},{"issue":"1","key":"2473_CR43","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-021-87496-1","volume":"11","author":"A Lagree","year":"2021","unstructured":"Lagree A, Mohebpour M, Meti N et al (2021) A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks. Sci Rep 11(1):1\u201311. https:\/\/doi.org\/10.1038\/s41598-021-87496-1","journal-title":"Sci Rep"},{"key":"2473_CR44","doi-asserted-by":"publisher","unstructured":"Pintelas E, Liaskos M, Livieris IE, Kotsiantis S, Pintelas P (2021) A novel explainable image classification framework: case study on skin cancer and plant disease prediction. Neural Comput Appl:1\u201319.https:\/\/doi.org\/10.1007\/s00521-021-06141-0","DOI":"10.1007\/s00521-021-06141-0"},{"issue":"7","key":"2473_CR45","doi-asserted-by":"publisher","first-page":"1207","DOI":"10.3390\/diagnostics11071207","volume":"11","author":"P Maros\u00e1n-Vilimszky","year":"2021","unstructured":"Maros\u00e1n-Vilimszky P, Szalai K, Horv\u00e1th A et al (2021) Automated skin lesion classification on ultrasound images. Diagnostics 11(7):1207. https:\/\/doi.org\/10.3390\/diagnostics11071207","journal-title":"Diagnostics"},{"key":"2473_CR46","doi-asserted-by":"publisher","unstructured":"Hameed SS, Hassan WH, Latiff LA, Muhammadsharif FF (2021) A comparative study of nature-inspired metaheuristic algorithms using a three-phase hybrid approach for gene selection and classification in high-dimensional cancer datasets. Soft Comput:1\u201319.https:\/\/doi.org\/10.1007\/s00500-021-05726-0","DOI":"10.1007\/s00500-021-05726-0"},{"key":"2473_CR47","doi-asserted-by":"publisher","first-page":"105867","DOI":"10.1016\/j.cmpb.2020.105867","volume":"200","author":"RHL e Silva","year":"2021","unstructured":"e Silva RHL, Machado AMC (2021) Automatic measurement of pressure ulcers using support vector machines and GrabCut. Comput Methods Programs Biomed 200:105867. https:\/\/doi.org\/10.1016\/j.cmpb.2020.105867","journal-title":"Comput Methods Programs Biomed"},{"key":"2473_CR48","doi-asserted-by":"publisher","unstructured":"Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna, Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 2818-2826. https:\/\/doi.org\/10.1109\/CVPR.2016.308.","DOI":"10.1109\/CVPR.2016.308"},{"key":"2473_CR49","doi-asserted-by":"publisher","unstructured":"Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017). Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 4700-4708. https:\/\/doi.org\/10.1109\/CVPR.2017.243","DOI":"10.1109\/CVPR.2017.243"},{"key":"2473_CR50","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46493-0_38","volume-title":"Computer vision \u2013 ECCV 2016. ECCV 2016. Lecture Notes in Computer Science","author":"K He","year":"2016","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision \u2013 ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9908. Springer, Cham. https:\/\/doi.org\/10.1007\/978-3-319-46493-0_38"},{"key":"2473_CR51","unstructured":"Tan M, Le Q (2019) EfficientNet: rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning. In: Proceedings of Machine Learning Research 97:6105-6114 Available from http:\/\/proceedings.mlr.press\/v97\/tan19a.html"}],"container-title":["Medical & Biological Engineering & Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-021-02473-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11517-021-02473-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-021-02473-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,2,17]],"date-time":"2022-02-17T06:17:29Z","timestamp":1645078649000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11517-021-02473-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,13]]},"references-count":51,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2022,3]]}},"alternative-id":["2473"],"URL":"https:\/\/doi.org\/10.1007\/s11517-021-02473-0","relation":{},"ISSN":["0140-0118","1741-0444"],"issn-type":[{"type":"print","value":"0140-0118"},{"type":"electronic","value":"1741-0444"}],"subject":[],"published":{"date-parts":[[2022,1,13]]},"assertion":[{"value":"10 April 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 November 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 January 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no potential conflict of interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}