{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,28]],"date-time":"2024-05-28T13:52:19Z","timestamp":1716904339160},"reference-count":60,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2021,11,16]],"date-time":"2021-11-16T00:00:00Z","timestamp":1637020800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,11,16]],"date-time":"2021-11-16T00:00:00Z","timestamp":1637020800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Med Biol Eng Comput"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1007\/s11517-021-02453-4","type":"journal-article","created":{"date-parts":[[2021,11,16]],"date-time":"2021-11-16T01:20:38Z","timestamp":1637025638000},"page":"171-187","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Finite element analysis of the influence of cyclic strain on cells anchored to substrates with varying properties"],"prefix":"10.1007","volume":"60","author":[{"given":"Abhinaba","family":"Banerjee","sequence":"first","affiliation":[]},{"given":"Mohammed Parvez","family":"Khan","sequence":"additional","affiliation":[]},{"given":"Ananya","family":"Barui","sequence":"additional","affiliation":[]},{"given":"Pallab","family":"Datta","sequence":"additional","affiliation":[]},{"given":"Amit Roy","family":"Chowdhury","sequence":"additional","affiliation":[]},{"given":"Krishnendu","family":"Bhowmik","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,16]]},"reference":[{"key":"2453_CR1","doi-asserted-by":"publisher","unstructured":"Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S (2021) Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol. Nature Research 22(1):22 38https:\/\/doi.org\/10.1038\/s41580-020-00306-w","DOI":"10.1038\/s41580-020-00306-w"},{"issue":"8","key":"2453_CR2","doi-asserted-by":"publisher","first-page":"564","DOI":"10.1080\/07853890310016333","volume":"35","author":"DE Ingber","year":"2003","unstructured":"Ingber DE (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35(8):564\u2013577. https:\/\/doi.org\/10.1080\/07853890310016333","journal-title":"Ann Med"},{"key":"2453_CR3","doi-asserted-by":"publisher","unstructured":"Ayad NME, Kaushik S, Weaver VM (2019) Tissue mechanics, an important regulator of development and disease. Philos Trans R Soc B Biol Sci. Royal Society Publishing 374(1779). https:\/\/doi.org\/10.1098\/rstb.2018.0215","DOI":"10.1098\/rstb.2018.0215"},{"key":"2453_CR4","doi-asserted-by":"publisher","unstructured":"Macri-Pellizzeri L, De-Juan-Pardo EM, Prosper F, Pelacho B (2018) Role of substrate biomechanics in controlling (stem) cell fate: implications in regenerative medicine. J Tissue Eng Regen Med. John Wiley and Sons Ltd 12(4):1012-1019.https:\/\/doi.org\/10.1002\/term.2586","DOI":"10.1002\/term.2586"},{"key":"2453_CR5","doi-asserted-by":"publisher","unstructured":"Deville SS, Cordes N (2019) The extracellular, cellular, and nuclear stiffness, a trinity in the cancer resistome\u2014a review. Front Oncol. Frontiers Media S.A. 9:1376.https:\/\/doi.org\/10.3389\/fonc.2019.01376","DOI":"10.3389\/fonc.2019.01376"},{"key":"2453_CR6","doi-asserted-by":"crossref","unstructured":"Tsimbouri PM, McNamara LE, Alakpa EV, Dalby MJ, Turner LA (2014) Cell-material interactions. In: Tissue Engineering: Second Edition, Elsevier Inc., pp 217\u2013251","DOI":"10.1016\/B978-0-12-420145-3.00007-9"},{"key":"2453_CR7","doi-asserted-by":"publisher","unstructured":"Wells RG (2008) The role of matrix stiffness in regulating cell behavior Hepatology. John Wiley & Sons 47(4):1394-1400.https:\/\/doi.org\/10.1002\/hep.22193","DOI":"10.1002\/hep.22193"},{"key":"2453_CR8","doi-asserted-by":"publisher","unstructured":"Wiche G (1998) Role of plectin in cytoskeleton organization and dynamics. J Cell Sci. Company of Biologists Ltd 111(9):2477\u20132486. https:\/\/doi.org\/10.1242\/jcs.111.17.2477","DOI":"10.1242\/jcs.111.17.2477"},{"key":"2453_CR9","doi-asserted-by":"publisher","unstructured":"Gerasymchuk D, Hubiernatorova A, Domanskyi A (2020) MicroRNAs regulating cytoskeleton dynamics, endocytosis, and cell motility\u2014a link between neurodegeneration and cancer? Front Neurol. Frontiers Media S.A. 11:549006. https:\/\/doi.org\/10.3389\/fneur.2020.549006","DOI":"10.3389\/fneur.2020.549006"},{"issue":"9","key":"2453_CR10","doi-asserted-by":"publisher","first-page":"136","DOI":"10.3390\/cells7090136","volume":"7","author":"M Kr\u00e4ter","year":"2018","unstructured":"Kr\u00e4ter M, Sapudom J, Bilz N, Pompe T, Guck J, Claus C (2018) Alterations in cell mechanics by actin cytoskeletal changes correlate with strain-specific Rubella virus phenotypes for cell migration and induction of apoptosis. Cells 7(9):136. https:\/\/doi.org\/10.3390\/cells7090136","journal-title":"Cells"},{"issue":"4","key":"2453_CR11","doi-asserted-by":"publisher","first-page":"463","DOI":"10.1139\/bcb-2018-0263","volume":"97","author":"L Liu","year":"2019","unstructured":"Liu L, Luo Q, Sun J, Song G (2019) Cytoskeletal control of nuclear morphology and stiffness are required for OPN-induced bone-marrow-derived mesenchymal stem cell migration. Biochem Cell Biol 97(4):463\u2013470. https:\/\/doi.org\/10.1139\/bcb-2018-0263","journal-title":"Biochem Cell Biol"},{"key":"2453_CR12","doi-asserted-by":"publisher","unstructured":"Fletcher DA Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature. Nature Publishing Group 463(7280):485\u2013492. https:\/\/doi.org\/10.1038\/nature08908","DOI":"10.1038\/nature08908"},{"key":"2453_CR13","doi-asserted-by":"publisher","unstructured":"Ispanixtlahuatl-Mer\u00e1z O, Schins RPF, Chirino YI (2018) Cell type specific cytoskeleton disruption induced by engineered nanoparticles. Environ Sci Nano. Royal Society of Chemistry 5(2):228\u2013245. https:\/\/doi.org\/10.1039\/c7en00704c","DOI":"10.1039\/c7en00704c"},{"issue":"2","key":"2453_CR14","doi-asserted-by":"publisher","first-page":"392","DOI":"10.3390\/ijms21020392","volume":"21","author":"Y Liu","year":"2020","unstructured":"Liu Y, Mollaeian K, Shamim MH, Ren J (2020) Effect of F-actin and microtubules on cellular mechanical behavior studied using atomic force microscope and an image recognition-based cytoskeleton quantification approach. Int J Mol Sci 21(2):392. https:\/\/doi.org\/10.3390\/ijms21020392","journal-title":"Int J Mol Sci"},{"issue":"5","key":"2453_CR15","doi-asserted-by":"publisher","first-page":"552","DOI":"10.1115\/1.1800559","volume":"126","author":"RP Jean","year":"2004","unstructured":"Jean RP, Gray DS, Spector AA, Chen CS (2004) Characterization of the nuclear deformation caused by changes in endothelial cell shape. J Biomech Eng 126(5):552\u2013558. https:\/\/doi.org\/10.1115\/1.1800559","journal-title":"J Biomech Eng"},{"issue":"4","key":"2453_CR16","doi-asserted-by":"publisher","first-page":"594","DOI":"10.1115\/1.1933997","volume":"127","author":"RP Jean","year":"2005","unstructured":"Jean RP, Chen CS, Spector AA (2005) Finite-element analysis of the adhesion-cytoskeleton-nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model. J Biomech Eng 127(4):594\u2013600. https:\/\/doi.org\/10.1115\/1.1933997","journal-title":"J Biomech Eng"},{"key":"2453_CR17","doi-asserted-by":"publisher","first-page":"168","DOI":"10.1016\/j.jmbbm.2015.11.039","volume":"59","author":"B Fallqvist","year":"2016","unstructured":"Fallqvist B, Fielden ML, Pettersson T, Nordgren N, Kroon M, Gad AKB (2016) Experimental and computational assessment of F-actin influence in regulating cellular stiffness and relaxation behaviour of fibroblasts. J Mech Behav Biomed Mater 59:168\u2013184. https:\/\/doi.org\/10.1016\/j.jmbbm.2015.11.039","journal-title":"J Mech Behav Biomed Mater"},{"key":"2453_CR18","doi-asserted-by":"publisher","first-page":"1738","DOI":"10.1016\/j.csbj.2021.03.026","volume":"19","author":"MI Khan","year":"2021","unstructured":"Khan MI, Ferdous SF, Adnan A (2021) Mechanical behavior of actin and spectrin subjected to high strain rate: a molecular dynamics simulation study. Comput Struct Biotechnol J 19:1738\u20131749. https:\/\/doi.org\/10.1016\/j.csbj.2021.03.026","journal-title":"Comput Struct Biotechnol J"},{"issue":"1","key":"2453_CR19","doi-asserted-by":"publisher","first-page":"520","DOI":"10.1016\/S0006-3495(00)76614-8","volume":"78","author":"C Rotsch","year":"2000","unstructured":"Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78(1):520\u2013535. https:\/\/doi.org\/10.1016\/S0006-3495(00)76614-8","journal-title":"Biophys J"},{"key":"2453_CR20","doi-asserted-by":"publisher","unstructured":"Mohammed D et al (2019) Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction. Front Bioeng Biotechnol. Frontiers Media S.A. 7(JUL.):162. https:\/\/doi.org\/10.3389\/fbioe.2019.00162","DOI":"10.3389\/fbioe.2019.00162"},{"key":"2453_CR21","doi-asserted-by":"publisher","unstructured":"Vining KH Mooney DJ (2017) Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. Nature Publishing Group 18. https:\/\/doi.org\/10.1038\/nrm.2017.108","DOI":"10.1038\/nrm.2017.108"},{"key":"2453_CR22","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1016\/j.ijsolstr.2017.08.019","volume":"128","author":"B Langrand","year":"2017","unstructured":"Langrand B, Casadei F, Marcadon V, Portemont G, Kruch S (2017) Experimental and finite element analysis of cellular materials under large compaction levels. Int J Solids Struct 128:99\u2013116. https:\/\/doi.org\/10.1016\/j.ijsolstr.2017.08.019","journal-title":"Int J Solids Struct"},{"key":"2453_CR23","doi-asserted-by":"publisher","unstructured":"Bansod YD, Matsumoto T, Nagayama K, Bursa J (2018) A finite element bendo-tensegrity model of eukaryotic cell. J Biomech Eng 140(10). https:\/\/doi.org\/10.1115\/1.4040246","DOI":"10.1115\/1.4040246"},{"issue":"5","key":"2453_CR24","doi-asserted-by":"publisher","first-page":"468","DOI":"10.1080\/10255842.2013.811234","volume":"18","author":"F Xue","year":"2015","unstructured":"Xue F, Lennon AB, McKayed KK, Campbell VA, Prendergast PJ (2015) Effect of membrane stiffness and cytoskeletal element density on mechanical stimuli within cells: an analysis of the consequences of ageing in cells. Comput Methods Biomech Biomed Engin 18(5):468\u2013476. https:\/\/doi.org\/10.1080\/10255842.2013.811234","journal-title":"Comput Methods Biomech Biomed Engin"},{"issue":"5","key":"2453_CR25","doi-asserted-by":"publisher","first-page":"1781","DOI":"10.1007\/s10237-020-01308-5","volume":"19","author":"J Zhao","year":"2020","unstructured":"Zhao J, Manuchehrfar F, Liang J (2020) Cell\u2013substrate mechanics guide collective cell migration through intercellular adhesion: a dynamic finite element cellular model. Biomech Model Mechanobiol 19(5):1781\u20131796. https:\/\/doi.org\/10.1007\/s10237-020-01308-5","journal-title":"Biomech Model Mechanobiol"},{"issue":"12","key":"2453_CR26","doi-asserted-by":"publisher","first-page":"780","DOI":"10.1038\/nnano.2007.388","volume":"2","author":"SE Cross","year":"2007","unstructured":"Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780\u2013783. https:\/\/doi.org\/10.1038\/nnano.2007.388","journal-title":"Nat Nanotechnol"},{"key":"2453_CR27","doi-asserted-by":"publisher","first-page":"219","DOI":"10.1016\/j.jmbbm.2013.11.022","volume":"38","author":"S Barreto","year":"2014","unstructured":"Barreto S, Perrault CM, Lacroix D (2014) Structural finite element analysis to explain cell mechanics variability. J Mech Behav Biomed Mater 38:219\u2013231. https:\/\/doi.org\/10.1016\/j.jmbbm.2013.11.022","journal-title":"J Mech Behav Biomed Mater"},{"key":"2453_CR28","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1016\/j.jmbbm.2017.05.030","volume":"76","author":"DR Katti","year":"2017","unstructured":"Katti DR, Katti KS (2017) Cancer cell mechanics with altered cytoskeletal behavior and substrate effects: A 3D finite element modeling study. J Mech Behav Biomed Mater 76:125\u2013134. https:\/\/doi.org\/10.1016\/j.jmbbm.2017.05.030","journal-title":"J Mech Behav Biomed Mater"},{"key":"2453_CR29","doi-asserted-by":"publisher","first-page":"881","DOI":"10.1016\/j.apsusc.2018.06.251","volume":"457","author":"S Prauzner-Bechcicki","year":"2018","unstructured":"Prauzner-Bechcicki S et al (2018) Adaptability of single melanoma cells to surfaces with distinct hydrophobicity and roughness. Appl Surf Sci 457:881\u2013890. https:\/\/doi.org\/10.1016\/j.apsusc.2018.06.251","journal-title":"Appl Surf Sci"},{"key":"2453_CR30","doi-asserted-by":"publisher","unstructured":"Amani H et al (2019) Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv Mater Interfaces. Wiley-VCH Verlag 6(13):1900572. https:\/\/doi.org\/10.1002\/admi.201900572","DOI":"10.1002\/admi.201900572"},{"issue":"35","key":"2453_CR31","doi-asserted-by":"publisher","first-page":"22946","DOI":"10.1039\/C8CP03538E","volume":"20","author":"J Zhou","year":"2018","unstructured":"Zhou J et al (2018) The effects of surface topography of nanostructure arrays on cell adhesion. Phys Chem Chem Phys 20(35):22946\u201322951. https:\/\/doi.org\/10.1039\/C8CP03538E","journal-title":"Phys Chem Chem Phys"},{"key":"2453_CR32","doi-asserted-by":"publisher","unstructured":"Miller MA, Zachary JF (2017) Mechanisms and Morphology of Cellular Injury, Adaptation, and Death. Pathologic Basis of Veterinary Disease:2\u201343.e19. https:\/\/doi.org\/10.1016\/B978-0-323-35775-3.00001-1","DOI":"10.1016\/B978-0-323-35775-3.00001-1"},{"issue":"1","key":"2453_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/ncomms4938","volume":"5","author":"A Livne","year":"2014","unstructured":"Livne A, Bouchbinder E, Geiger B (2014) Cell reorientation under cyclic stretching. Nat Commun 5(1):1\u20138. https:\/\/doi.org\/10.1038\/ncomms4938","journal-title":"Nat Commun"},{"issue":"2","key":"2453_CR34","doi-asserted-by":"publisher","first-page":"27","DOI":"10.3390\/cells5020027","volume":"5","author":"N Belaadi","year":"2016","unstructured":"Belaadi N, Aureille J, Guilluy C (2016) Under pressure: mechanical stress management in the nucleus. Cells 5(2):27. https:\/\/doi.org\/10.3390\/cells5020027","journal-title":"Cells"},{"issue":"1","key":"2453_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-019-51024-z","volume":"9","author":"A Weber","year":"2019","unstructured":"Weber A, Iturri J, Benitez R, Zemljic-Jokhadar S, Toca-Herrera JL (2019) Microtubule disruption changes endothelial cell mechanics and adhesion. Sci Rep 9(1):1\u201312. https:\/\/doi.org\/10.1038\/s41598-019-51024-z","journal-title":"Sci Rep"},{"key":"2453_CR36","doi-asserted-by":"publisher","DOI":"10.1152\/jappl.2000.89.4.1663","author":"DE Ingber","year":"2000","unstructured":"Ingber DE, Heidemann SR, Lamoureux P, Buxbaum RE (2000) Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol. https:\/\/doi.org\/10.1152\/jappl.2000.89.4.1663","journal-title":"J Appl Physiol"},{"key":"2453_CR37","doi-asserted-by":"publisher","DOI":"10.1016\/j.actamat.2007.04.022","author":"S Suresh","year":"2007","unstructured":"Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater. https:\/\/doi.org\/10.1016\/j.actamat.2007.04.022","journal-title":"Acta Mater"},{"key":"2453_CR38","doi-asserted-by":"publisher","DOI":"10.1016\/j.biomaterials.2013.04.022","author":"S Barreto","year":"2013","unstructured":"Barreto S, Clausen CH, Perrault CM, Fletcher DA, Lacroix D (2013) A multi-structural single cell model of force-induced interactions of cytoskeletal components. Biomaterials. https:\/\/doi.org\/10.1016\/j.biomaterials.2013.04.022","journal-title":"Biomaterials"},{"key":"2453_CR39","doi-asserted-by":"publisher","DOI":"10.1016\/j.bpj.2013.06.021","author":"H Jiang","year":"2013","unstructured":"Jiang H, Sun SX (2013) Cellular pressure and volume regulation and implications for cell mechanics. Biophys J. https:\/\/doi.org\/10.1016\/j.bpj.2013.06.021","journal-title":"Biophys J"},{"key":"2453_CR40","doi-asserted-by":"publisher","DOI":"10.1155\/2016\/2735091","author":"L Wang","year":"2016","unstructured":"Wang L, Hsu HY, Li X, Xian CJ (2016) Effects of frequency and acceleration amplitude on opsteoblast mechanical vibration responses: a finite element study. Biomed Res Int. https:\/\/doi.org\/10.1155\/2016\/2735091","journal-title":"Biomed Res Int"},{"key":"2453_CR41","doi-asserted-by":"publisher","unstructured":"H\u00f8ilund-Carlsen PF, Hess S, Werner TJ, Alavi A (2018) Cancer metastasizes to the bone marrow and not to the bone: time for a paradigm shift! Eur J Nucl Med Mol Imaging. Springer Berlin Heidelberg 45(6):893\u2013897. https:\/\/doi.org\/10.1007\/s00259-018-3959-6","DOI":"10.1007\/s00259-018-3959-6"},{"key":"2453_CR42","doi-asserted-by":"publisher","DOI":"10.1115\/1.4005666","author":"R Khanna","year":"2011","unstructured":"Khanna R, Katti KS, Katti DR (2011) Experiments in nanomechanical properties of live osteoblast cells and cell-biomaterial interface. J Nanotechnol Eng Med. https:\/\/doi.org\/10.1115\/1.4005666","journal-title":"J Nanotechnol Eng Med"},{"key":"2453_CR43","doi-asserted-by":"publisher","DOI":"10.1002\/jbm.a.35342","author":"AH Ambre","year":"2015","unstructured":"Ambre AH, Katti DR, Katti KS (2015) Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering. J Biomed Mater Res A. https:\/\/doi.org\/10.1002\/jbm.a.35342","journal-title":"J Biomed Mater Res A"},{"key":"2453_CR44","doi-asserted-by":"publisher","DOI":"10.1155\/2010\/175264","author":"R Khanna","year":"2010","unstructured":"Khanna R, Katti KS, Katti DR (2010) In situ swelling behavior of chitosan-polygalacturonic acid\/hydroxyapatite nanocomposites in cell culture media. Int J Polym Sci. https:\/\/doi.org\/10.1155\/2010\/175264","journal-title":"Int J Polym Sci"},{"key":"2453_CR45","doi-asserted-by":"publisher","DOI":"10.1016\/j.compositesb.2012.01.056","author":"MR Nikpour","year":"2012","unstructured":"Nikpour MR, Rabiee SM, Jahanshahi M (2012) Synthesis and characterization of hydroxyapatite\/chitosan nanocomposite materials for medical engineering applications. Compos B Eng. https:\/\/doi.org\/10.1016\/j.compositesb.2012.01.056","journal-title":"Compos B Eng"},{"key":"2453_CR46","doi-asserted-by":"publisher","DOI":"10.1061\/(asce)em.1943-7889.0000002","author":"R Khanna","year":"2009","unstructured":"Khanna R, Katti KS, Katti DR (2009) Nanomechanics of surface modified nanohydroxyapatite particulates used in biomaterials. J Eng Mech. https:\/\/doi.org\/10.1061\/(asce)em.1943-7889.0000002","journal-title":"J Eng Mech"},{"issue":"29","key":"2453_CR47","doi-asserted-by":"publisher","first-page":"3927","DOI":"10.1016\/j.biomaterials.2008.06.020","volume":"29","author":"F Sommerhage","year":"2008","unstructured":"Sommerhage F, Helpenstein R, Rauf A, Wrobel G, Offenh\u00e4usser A, Ingebrandt S (2008) Membrane allocation profiling: a method to characterize three-dimensional cell shape and attachment based on surface reconstruction. Biomaterials 29(29):3927\u20133935. https:\/\/doi.org\/10.1016\/j.biomaterials.2008.06.020","journal-title":"Biomaterials"},{"key":"2453_CR48","doi-asserted-by":"publisher","DOI":"10.1016\/S0021-9290(02)00075-1","author":"T Frisch","year":"2002","unstructured":"Frisch T, Thoumine O (2002) Predicting the kinetics of cell spreading. J Biomech. https:\/\/doi.org\/10.1016\/S0021-9290(02)00075-1","journal-title":"J Biomech"},{"issue":"3","key":"2453_CR49","doi-asserted-by":"publisher","first-page":"222","DOI":"10.1007\/s002490050203","volume":"28","author":"O Thoumine","year":"1999","unstructured":"Thoumine O, Cardoso O, Meister JJ (1999) Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Eur Biophys J 28(3):222\u2013234. https:\/\/doi.org\/10.1007\/s002490050203","journal-title":"Eur Biophys J"},{"key":"2453_CR50","unstructured":"Thompson MK, Thompson JM (2010) Methods for Generating Probabilistic Rough Surfaces in ANSYS. In Proceedings of the 20th KOREA ANSYS User\u2019s Conference"},{"issue":"1","key":"2453_CR51","doi-asserted-by":"publisher","first-page":"e0220019","DOI":"10.1371\/journal.pone.0220019","volume":"15","author":"M Anguiano","year":"2020","unstructured":"Anguiano M et al (2020) The use of mixed collagen-Matrigel matrices of increasing complexity recapitulates the biphasic role of cell adhesion in cancer cell migration: ECM sensing, remodeling and forces at the leading edge of cancer invasion. PLoS One 15(1):e0220019. https:\/\/doi.org\/10.1371\/journal.pone.0220019","journal-title":"PLoS One"},{"issue":"48","key":"2453_CR52","doi-asserted-by":"publisher","first-page":"19039","DOI":"10.1039\/c7nr06284b","volume":"9","author":"Z Li","year":"2017","unstructured":"Li Z et al (2017) Cellular traction forces: a useful parameter in cancer research. Nanoscale 9(48):19039\u201319044. https:\/\/doi.org\/10.1039\/c7nr06284b","journal-title":"Nanoscale"},{"key":"2453_CR53","doi-asserted-by":"publisher","unstructured":"Malandrino A, Mak M, Kamm RD, Moeendarbary E (2018) Complex mechanics of the heterogeneous extracellular matrix in cancer. Extreme Mech Lett. Elsevier Ltd 21:5\u201334. https:\/\/doi.org\/10.1016\/j.eml.2018.02.003","DOI":"10.1016\/j.eml.2018.02.003"},{"issue":"6","key":"2453_CR54","doi-asserted-by":"publisher","first-page":"1649","DOI":"10.3390\/ijms19061649","volume":"19","author":"S Fu","year":"2018","unstructured":"Fu S, Yin L, Lin X, Lu J, Wang X (2018) Effects of cyclic mechanical stretch on the proliferation of L6 myoblasts and its mechanisms: PI3K\/Akt and MAPK signal pathways regulated by IGF-1 receptor. Int J Mol Sci 19(6):1649. https:\/\/doi.org\/10.3390\/ijms19061649","journal-title":"Int J Mol Sci"},{"key":"2453_CR55","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.82.15.5030","author":"ND Gershon","year":"1985","unstructured":"Gershon ND, Porter KR, Trus BL (1985) The cytoplasmic matrix: its volume and surface area and the diffusion of molecules through it. Proc Natl Acad Sci U S A. https:\/\/doi.org\/10.1073\/pnas.82.15.5030","journal-title":"Proc Natl Acad Sci U S A"},{"key":"2453_CR56","volume-title":"Nanomedicine VolumeI: Basic capabilities","author":"RA Freitas Jr","year":"1999","unstructured":"Freitas RA Jr (1999) Nanomedicine VolumeI: Basic capabilities. Landes Bioscience, Georgetown"},{"key":"2453_CR57","doi-asserted-by":"publisher","DOI":"10.1038\/cddis.2013.463","author":"H Vakifahmetoglu-Norberg","year":"2013","unstructured":"Vakifahmetoglu-Norberg H et al (2013) Caspase-2 promotes cytoskeleton protein degradation during apoptotic cell death. Cell Death Dis. https:\/\/doi.org\/10.1038\/cddis.2013.463","journal-title":"Cell Death Dis"},{"key":"2453_CR58","doi-asserted-by":"publisher","DOI":"10.3390\/ijms18112393","author":"S Povea-Cabello","year":"2017","unstructured":"Povea-Cabello S et al (2017) Dynamic reorganization of the cytoskeleton during apoptosis: the two coffins hypothesis. Int J Mol Sci. https:\/\/doi.org\/10.3390\/ijms18112393","journal-title":"Int J Mol Sci"},{"key":"2453_CR59","doi-asserted-by":"publisher","DOI":"10.1038\/nmat4009","author":"O Chaudhuri","year":"2014","unstructured":"Chaudhuri O et al (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater. https:\/\/doi.org\/10.1038\/nmat4009","journal-title":"Nat Mater"},{"issue":"1","key":"2453_CR60","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1038\/s41567-019-0680-8","volume":"16","author":"YL Han","year":"2020","unstructured":"Han YL et al (2020) Cell swelling, softening and invasion in a three-dimensional breast cancer model. Nat Phys 16(1):101\u2013108. https:\/\/doi.org\/10.1038\/s41567-019-0680-8","journal-title":"Nat Phys"}],"container-title":["Medical & Biological Engineering & Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-021-02453-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11517-021-02453-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11517-021-02453-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,3]],"date-time":"2022-01-03T17:49:24Z","timestamp":1641232164000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11517-021-02453-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11,16]]},"references-count":60,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2022,1]]}},"alternative-id":["2453"],"URL":"https:\/\/doi.org\/10.1007\/s11517-021-02453-4","relation":{},"ISSN":["0140-0118","1741-0444"],"issn-type":[{"value":"0140-0118","type":"print"},{"value":"1741-0444","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,11,16]]},"assertion":[{"value":"19 June 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 August 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 November 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest"}}]}}