{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,15]],"date-time":"2024-05-15T05:58:46Z","timestamp":1715752726353},"reference-count":37,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2021,4,27]],"date-time":"2021-04-27T00:00:00Z","timestamp":1619481600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,4,27]],"date-time":"2021-04-27T00:00:00Z","timestamp":1619481600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Sci. China Inf. Sci."],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1007\/s11432-020-3100-8","type":"journal-article","created":{"date-parts":[[2021,5,4]],"date-time":"2021-05-04T04:09:00Z","timestamp":1620101340000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":14,"title":["Detection of the interictal epileptic discharges based on wavelet bispectrum interaction and recurrent neural network"],"prefix":"10.1007","volume":"64","author":[{"given":"Nabil","family":"Sabor","sequence":"first","affiliation":[]},{"given":"Yongfu","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhe","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Pu","sequence":"additional","affiliation":[]},{"given":"Guoxing","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yong","family":"Lian","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,4,27]]},"reference":[{"key":"3100_CR1","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1016\/j.seizure.2018.04.020","volume":"59","author":"T de Cooman","year":"2018","unstructured":"de Cooman T, Varon C, van de Vel A, et al. Adaptive nocturnal seizure detection using heart rate and low-complexity novelty detection. Seizure, 2018, 59: 48\u201353","journal-title":"Seizure"},{"key":"3100_CR2","volume-title":"Epilepsy in the Western Pacific Region: A Call to Action: Global Campaign Against Epilepsy","author":"World Health Organization","year":"2004","unstructured":"World Health Organization. Epilepsy in the Western Pacific Region: A Call to Action: Global Campaign Against Epilepsy. Manila: WHO Regional Office for the Western Pacific, 2004"},{"key":"3100_CR3","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1007\/s40708-016-0044-4","volume":"3","author":"E I Zacharaki","year":"2016","unstructured":"Zacharaki E I, Mporas I, Garganis K, et al. Spike pattern recognition by supervised classification in low dimensional embedding space. Brain Inf, 2016, 3: 73\u201383","journal-title":"Brain Inf"},{"key":"3100_CR4","doi-asserted-by":"publisher","first-page":"069409","DOI":"10.1007\/s11432-018-9838-3","volume":"62","author":"S K Wang","year":"2019","unstructured":"Wang S K, Pang B, Liu M, et al. A novel compression framework using energy-sensitive QRS complex detection method for a mobile ECG. Sci China Inf Sci, 2019, 62: 069409","journal-title":"Sci China Inf Sci"},{"key":"3100_CR5","doi-asserted-by":"publisher","first-page":"149402","DOI":"10.1007\/s11432-018-9719-9","volume":"63","author":"Q R Zhang","year":"2020","unstructured":"Zhang Q R, Xie Q S, Duan K F, et al. A digital signal processor (DSP)-based system for embedded continuous-time cuffless blood pressure monitoring using single-channel PPG signal. Sci China Inf Sci, 2020, 63: 149402","journal-title":"Sci China Inf Sci"},{"key":"3100_CR6","doi-asserted-by":"publisher","first-page":"060415","DOI":"10.1007\/s11432-017-9351-4","volume":"61","author":"C Q Xu","year":"2018","unstructured":"Xu C Q, Liu Y, Yang Y T. An intelligent partitioning approach of the system-on-chip for flexible and stretchable systems. Sci China Inf Sci, 2018, 61: 060415","journal-title":"Sci China Inf Sci"},{"key":"3100_CR7","doi-asserted-by":"publisher","first-page":"160403","DOI":"10.1007\/s11432-020-2872-3","volume":"63","author":"B W Bai","year":"2020","unstructured":"Bai B W, Shu H W, Wang X J, et al. Towards silicon photonic neural networks for artificial intelligence. Sci China Inf Sci, 2020, 63: 160403","journal-title":"Sci China Inf Sci"},{"key":"3100_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3389\/fnhum.2019.00076","volume":"13","author":"M Golmohammadi","year":"2019","unstructured":"Golmohammadi M, Harati A, de Diego S L, et al. Automatic analysis of EEGs using big data and hybrid deep learning architectures. Front Hum Neurosci, 2019, 13: 1\u201314","journal-title":"Front Hum Neurosci"},{"key":"3100_CR9","doi-asserted-by":"crossref","unstructured":"Carey H J, Manic M, Arsenovic P. Epileptic spike detection with EEG using artificial neural networks. In: Proceedings of International Conference on Human System Interactions (HSI), 2016. 89\u201395","DOI":"10.1109\/HSI.2016.7529614"},{"key":"3100_CR10","doi-asserted-by":"publisher","first-page":"2328","DOI":"10.1016\/j.clinph.2013.05.019","volume":"124","author":"S S Lodder","year":"2013","unstructured":"Lodder S S, Askamp J, van Putten M J A M. Inter-ictal spike detection using a database of smart templates. Clin Neurophysiol, 2013, 124: 2328\u20132335","journal-title":"Clin Neurophysiol"},{"key":"3100_CR11","doi-asserted-by":"crossref","unstructured":"Malik M H, Saeed M, Kamboh A M. Automatic threshold optimization in nonlinear energy operator based spike detection. In: Proceedings of International Conference of IEEE Engineering in Medicine and Biology Society (EMBC), 2016. 774\u2013777","DOI":"10.1109\/EMBC.2016.7590816"},{"key":"3100_CR12","doi-asserted-by":"publisher","first-page":"026018","DOI":"10.1088\/1741-2560\/13\/2\/026018","volume":"13","author":"Q M Tieng","year":"2016","unstructured":"Tieng Q M, Kharatishvili I, Chen M, et al. Mouse EEG spike detection based on the adapted continuous wavelet transform. J Neural Eng, 2016, 13: 026018","journal-title":"J Neural Eng"},{"key":"3100_CR13","doi-asserted-by":"publisher","first-page":"12536","DOI":"10.3390\/s130912536","volume":"13","author":"Y C Liu","year":"2013","unstructured":"Liu Y C, Lin C C, Tsai J J, et al. Model-based spike detection of epileptic EEG data. Sensors, 2013, 13: 12536\u201312547","journal-title":"Sensors"},{"key":"3100_CR14","unstructured":"Douget J E L, Fouad A, Filali M M, et al. Surface and intracranial EEG spike detection based on discrete wavelet decomposition and random forest classification. In: Proceedings of International Conference of IEEE Engineering in Medicine and Biology Society (EMBC), 2017. 475\u2013478"},{"key":"3100_CR15","first-page":"3","volume":"22","author":"A Quintero-Rinc\u00f3n","year":"2018","unstructured":"Quintero-Rinc\u00f3n A, Muro V, D\u2019Giano C. Spike-and-wave detection in epileptic signals using cross-correlation and decision trees. Rev Argent de Bioingenier\u00eda, 2018, 22: 3\u20136","journal-title":"Rev Argent de Bioingenier\u00eda"},{"key":"3100_CR16","doi-asserted-by":"publisher","first-page":"15491","DOI":"10.1038\/s41598-018-33969-9","volume":"8","author":"E B Assi","year":"2018","unstructured":"Assi E B, Gagliano L, Rihana S, et al. Bispectrum features and multilayer perceptron classifier to enhance seizure prediction. Sci Rep, 2018, 8: 15491","journal-title":"Sci Rep"},{"key":"3100_CR17","doi-asserted-by":"crossref","unstructured":"Chua C K, Chandran V, Acharya R, et al. Higher order spectral (HOS) analysis of epileptic EEG signals. In: Proceedings of International Conference of IEEE Engineering in Medicine and Biology Society, 2007. 6495\u20136498","DOI":"10.1109\/IEMBS.2007.4353847"},{"key":"3100_CR18","doi-asserted-by":"publisher","first-page":"6605","DOI":"10.3390\/s130506605","volume":"13","author":"M Al-Kadi","year":"2013","unstructured":"Al-Kadi M, Reaz M, Ali M. Evolution of electroencephalogram signal analysis techniques during anesthesia. Sensors, 2013, 13: 6605\u20136635","journal-title":"Sensors"},{"key":"3100_CR19","doi-asserted-by":"publisher","first-page":"1502906","DOI":"10.1080\/23311916.2018.1502906","volume":"5","author":"D Kumar","year":"2018","unstructured":"Kumar D, Jadeja R, Pande S, et al. Wavelet bispectrum-based nonlinear features for cardiac murmur identification. Cogent Eng, 2018, 5: 1502906","journal-title":"Cogent Eng"},{"key":"3100_CR20","doi-asserted-by":"publisher","first-page":"458","DOI":"10.1016\/j.oceaneng.2005.04.013","volume":"33","author":"M A K Elsayed","year":"2006","unstructured":"Elsayed M A K. Wavelet bicoherence analysis of wind-wave interaction. Ocean Eng, 2006, 33: 458\u2013470","journal-title":"Ocean Eng"},{"key":"3100_CR21","doi-asserted-by":"publisher","first-page":"1981","DOI":"10.1109\/TBME.2015.2409133","volume":"62","author":"L J Hadjileontiadis","year":"2015","unstructured":"Hadjileontiadis L J. EEG-based tonic cold pain characterization using wavelet higher order spectral features. IEEE Trans Biomed Eng, 2015, 62: 1981\u20131991","journal-title":"IEEE Trans Biomed Eng"},{"key":"3100_CR22","doi-asserted-by":"publisher","first-page":"196","DOI":"10.3389\/fnins.2016.00196","volume":"10","author":"I Obeid","year":"2016","unstructured":"Obeid I, Picone J. The temple university hospital EEG data corpus. Front Neurosci, 2016, 10: 196","journal-title":"Front Neurosci"},{"key":"3100_CR23","doi-asserted-by":"crossref","unstructured":"Lopez S, Gross A, Yang S, et al. An analysis of two common reference points for EEGS. In: Proceedings of IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2016. 1\u20135","DOI":"10.1109\/SPMB.2016.7846854"},{"key":"3100_CR24","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1109\/81.904882","volume":"48","author":"R Esteller","year":"2001","unstructured":"Esteller R, Vachtsevanos G, Echauz J, et al. A comparison of waveform fractal dimension algorithms. IEEE Trans Circ Syst I, 2001, 48: 177\u2013183","journal-title":"IEEE Trans Circ Syst I"},{"key":"3100_CR25","doi-asserted-by":"publisher","first-page":"2039","DOI":"10.1152\/ajpheart.2000.278.6.H2039","volume":"278","author":"J S Richman","year":"2000","unstructured":"Richman J S, Moorman J R. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol-Heart Circ Physiol, 2000, 278: 2039\u20132049","journal-title":"Am J Physiol-Heart Circ Physiol"},{"key":"3100_CR26","volume-title":"Multiresolution Signal Decomposition","author":"A N Akansu","year":"2001","unstructured":"Akansu A N, Haddad R A. Multiresolution Signal Decomposition. 2nd ed. San Diego: Academic Press, 2001","edition":"2nd ed."},{"key":"3100_CR27","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1049\/ecej:19940401","volume":"6","author":"P M Bentley","year":"1994","unstructured":"Bentley P M, McDonnell J T E. Wavelet transforms: an introduction. Electron Commun Eng J, 1994, 6: 175\u2013186","journal-title":"Electron Commun Eng J"},{"key":"3100_CR28","doi-asserted-by":"crossref","unstructured":"Hou C, Han H, Liu Z J, et al. A wind direction forecasting method based on z-score normalization and long short-term memory. In: Proceedings of the 3rd International Conference on Green Energy and Applications (ICGEA), 2019. 172\u2013176","DOI":"10.1109\/ICGEA.2019.8880774"},{"key":"3100_CR29","doi-asserted-by":"publisher","first-page":"119203","DOI":"10.1007\/s11432-018-9543-8","volume":"64","author":"D Q Huang","year":"2021","unstructured":"Huang D Q, Fu Y Z, Qin N, et al. Fault diagnosis of high-speed train bogie based on LSTM neural network. Sci China Inf Sci, 2021, 64: 119203","journal-title":"Sci China Inf Sci"},{"key":"3100_CR30","unstructured":"Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization. 2014. ArXiv:1409.2329"},{"key":"3100_CR31","doi-asserted-by":"publisher","first-page":"220100","DOI":"10.1007\/s11432-019-2701-8","volume":"62","author":"X Bai","year":"2019","unstructured":"Bai X, Pang Y W, Zhang G F. Special focus on deep learning for computer vision. Sci China Inf Sci, 2019, 62: 220100","journal-title":"Sci China Inf Sci"},{"key":"3100_CR32","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1111\/j.0824-7935.2004.t01-1-00228.x","volume":"20","author":"A Estabrooks","year":"2004","unstructured":"Estabrooks A, Jo T, Japkowicz N. A multiple resampling method for learning from imbalanced data sets. Comput Intell, 2004, 20: 18\u201336","journal-title":"Comput Intell"},{"key":"3100_CR33","doi-asserted-by":"publisher","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","volume":"27","author":"H C Peng","year":"2005","unstructured":"Peng H C, Long F H, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell, 2005, 27: 1226\u20131238","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"3100_CR34","doi-asserted-by":"publisher","first-page":"1119","DOI":"10.1109\/TSMCB.2012.2187280","volume":"42","author":"S Wang","year":"2012","unstructured":"Wang S, Yao X. Multiclass imbalance problems: analysis and potential solutions. IEEE Trans Syst Man Cybern B, 2012, 42: 1119\u20131130","journal-title":"IEEE Trans Syst Man Cybern B"},{"key":"3100_CR35","doi-asserted-by":"publisher","unstructured":"Reus E E M, Visser G H, Cox F M E. Determining the spike-wave index using automated detection software. J Clin Neuro-Physiol, 2019. doi: https:\/\/doi.org\/10.1097\/WNP.0000000000000672","DOI":"10.1097\/WNP.0000000000000672"},{"key":"3100_CR36","doi-asserted-by":"publisher","first-page":"462","DOI":"10.1016\/j.eswa.2014.07.038","volume":"42","author":"M H Zarifia","year":"2015","unstructured":"Zarifia M H, Ghalehjogh N K, Baradaran-nia M. A new evolutionary approach for neural spike detection based on genetic algorithm. Expert Syst Appl, 2015, 42: 462\u2013467","journal-title":"Expert Syst Appl"},{"key":"3100_CR37","doi-asserted-by":"publisher","first-page":"110","DOI":"10.1002\/epi4.12303","volume":"11","author":"J A Pfammatter","year":"2019","unstructured":"Pfammatter J A, Maganti R K, Jones M V. An automated, machine learning-based detection algorithm for spike-wave discharges (SWDs) in a mouse model of absence epilepsy. Epilepsia Open, 2019, 11: 110\u2013122","journal-title":"Epilepsia Open"}],"container-title":["Science China Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11432-020-3100-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11432-020-3100-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11432-020-3100-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,20]],"date-time":"2022-07-20T20:10:04Z","timestamp":1658347804000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11432-020-3100-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4,27]]},"references-count":37,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2021,6]]}},"alternative-id":["3100"],"URL":"https:\/\/doi.org\/10.1007\/s11432-020-3100-8","relation":{},"ISSN":["1674-733X","1869-1919"],"issn-type":[{"value":"1674-733X","type":"print"},{"value":"1869-1919","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,4,27]]},"assertion":[{"value":"5 May 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 July 2020","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 September 2020","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 April 2021","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"162403"}}