{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T00:13:47Z","timestamp":1722989627007},"reference-count":217,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2020,5,26]],"date-time":"2020-05-26T00:00:00Z","timestamp":1590451200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,5,26]],"date-time":"2020-05-26T00:00:00Z","timestamp":1590451200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Sci. China Inf. Sci."],"published-print":{"date-parts":[[2020,7]]},"DOI":"10.1007\/s11432-019-2857-5","type":"journal-article","created":{"date-parts":[[2020,5,28]],"date-time":"2020-05-28T01:02:32Z","timestamp":1590627752000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":13,"title":["Neuroimaging of inflammation in alcohol use disorder: a review"],"prefix":"10.1007","volume":"63","author":[{"given":"Dana E.","family":"Feldman","sequence":"first","affiliation":[]},{"given":"Katherine L.","family":"McPherson","sequence":"additional","affiliation":[]},{"given":"Catherine L.","family":"Biesecker","sequence":"additional","affiliation":[]},{"given":"Corinde E.","family":"Wiers","sequence":"additional","affiliation":[]},{"given":"Peter","family":"Manza","sequence":"additional","affiliation":[]},{"given":"Nora D.","family":"Volkow","sequence":"additional","affiliation":[]},{"given":"Gene-Jack","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,26]]},"reference":[{"key":"2857_CR1","doi-asserted-by":"publisher","DOI":"10.1176\/appi.books.9780890425596","volume-title":"Diagnostic and Statistical Manual of Mental Disorders","author":"American Psychiatric Association.","year":"2013","unstructured":"American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington: APA, 2013","edition":"5th"},{"key":"2857_CR2","doi-asserted-by":"publisher","first-page":"1015","DOI":"10.1016\/S0140-6736(18)31310-2","volume":"392","author":"M G Griswold","year":"2018","unstructured":"Griswold M G, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2018, 392: 1015\u20131035","journal-title":"Lancet"},{"key":"2857_CR3","doi-asserted-by":"publisher","first-page":"1540","DOI":"10.3390\/ijerph7041540","volume":"7","author":"J Brust","year":"2010","unstructured":"Brust J. Ethanol and cognition: indirect effects, neurotoxicity and neuroprotection: a review. J Environ Res Public Health, 2010, 7: 1540\u20131557","journal-title":"J Environ Res Public Health"},{"key":"2857_CR4","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.neuropharm.2017.01.031","volume":"122","author":"F T Crews","year":"2017","unstructured":"Crews F T, Lawrimore C J, Walter T J, et al. The role of neuroimmune signaling in alcoholism. Neuropharmacology, 2017, 122: 56\u201373","journal-title":"Neuropharmacology"},{"key":"2857_CR5","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1016\/j.pbb.2019.01.007","volume":"179","author":"M Kohno","year":"2019","unstructured":"Kohno M, Link J, Dennis L E, et al. Neuroinflammation in addiction: a review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav, 2019, 179: 34\u201342","journal-title":"Pharmacol Biochem Behav"},{"key":"2857_CR6","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1111\/j.1369-1600.2011.00418.x","volume":"18","author":"K Stavro","year":"2013","unstructured":"Stavro K, Pelletier J, Potvin S. Widespread and sustained cognitive deficits in alcoholism: a meta-analysis. Addiction Biol, 2013, 18: 203\u2013213","journal-title":"Addiction Biol"},{"key":"2857_CR7","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1192\/bjp.bp.108.051425","volume":"193","author":"S Gupta","year":"2008","unstructured":"Gupta S, Warner J. Alcohol-related dementia: a 21st-century silent epidemic? British J Psychiatry, 2008, 193: 351\u2013353","journal-title":"British J Psychiatry"},{"key":"2857_CR8","doi-asserted-by":"publisher","first-page":"498","DOI":"10.1093\/alcalc\/agh203","volume":"40","author":"S J Davies","year":"2005","unstructured":"Davies S J, Pandit S A, Feeney A, et al. Is there cognitive impairment in clinically \u2018healthy\u2019 abstinent alcohol dependence? Alcohol Alcoholism, 2005, 40: 498\u2013503","journal-title":"Alcohol Alcoholism"},{"key":"2857_CR9","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1186\/s12974-017-0799-4","volume":"14","author":"J L G Coleman","year":"2017","unstructured":"Coleman J L G, Zou J, Crews F T. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J Neuroinflammation, 2017, 14: 22","journal-title":"J Neuroinflammation"},{"key":"2857_CR10","doi-asserted-by":"publisher","first-page":"951","DOI":"10.1189\/jlb.3MR0416-171R","volume":"100","author":"C J M Kane","year":"2016","unstructured":"Kane C J M, Drew P D. Inflammatory responses to alcohol in the CNS: nuclear receptors as potential therapeutics for alcohol-induced neuropathologies. J Leukoc Biol, 2016, 100: 951\u2013959","journal-title":"J Leukoc Biol"},{"key":"2857_CR11","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1016\/j.neuroscience.2013.03.042","volume":"244","author":"V Tiwari","year":"2013","unstructured":"Tiwari V, Chopra K. Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflam-mation in the adult rat brain. Neuroscience, 2013, 244: 147\u2013158","journal-title":"Neuroscience"},{"key":"2857_CR12","doi-asserted-by":"publisher","first-page":"971","DOI":"10.1007\/BF01314757","volume":"26","author":"G M Robinson","year":"1981","unstructured":"Robinson G M, Orrego H, Israel Y, et al. Low-molecular-weight polyethylene glycol as a probe of gastrointestinal permeability after alcohol ingestion. Digest Dis Sci, 1981, 26: 971\u2013977","journal-title":"Digest Dis Sci"},{"key":"2857_CR13","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1016\/S0140-6736(84)92109-3","volume":"323","author":"I Bjarnason","year":"1984","unstructured":"Bjarnason I, Ward K, Peters T J. The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet, 1984, 323: 179\u2013182","journal-title":"Lancet"},{"key":"2857_CR14","first-page":"2205","volume":"89","author":"A F Keshavarz\u00b4\u0131an","year":"1994","unstructured":"Keshavarz\u00b4\u0131an A F, Jeremy Z, Vaeth J, et al. The differing effects of acute and chronic alcohol on gastric and intestinal permeability. Am J Gastroenterol, 1994, 89: 2205\u20132211","journal-title":"Am J Gastroenterol"},{"key":"2857_CR15","doi-asserted-by":"publisher","first-page":"911","DOI":"10.1016\/j.bbi.2012.04.001","volume":"26","author":"S Leclercq","year":"2012","unstructured":"Leclercq S, Cani P D, Neyrinck A M, et al. Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain Behav Immun, 2012, 26: 911\u2013918","journal-title":"Brain Behav Immun"},{"key":"2857_CR16","first-page":"121","volume":"153","author":"F W Ellis","year":"1966","unstructured":"Ellis F W. Effect of ethanol on plasma corticosterone levels. J Pharmacol Exp Ther, 1966, 153: 121\u2013127","journal-title":"J Pharmacol Exp Ther"},{"key":"2857_CR17","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.bbi.2009.07.008","volume":"24","author":"M G Frank","year":"2010","unstructured":"Frank M G, Miguel Z D, Watkins L R, et al. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. Coli Lipopolysaccharide. Brain Behav Immun, 2010, 24: 19\u201330","journal-title":"Brain Behav Immun"},{"key":"2857_CR18","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1159\/000499621","volume":"5","author":"E A Woodcock","year":"2019","unstructured":"Woodcock E A, Hillmer A T, Mason G F, et al. Imaging biomarkers of the neuroimmune system among substance use disorders: a systematic review. Mol Neuropsychiatry, 2019, 5: 125\u2013146","journal-title":"Mol Neuropsychiatry"},{"key":"2857_CR19","doi-asserted-by":"crossref","first-page":"1831","DOI":"10.1111\/ejn.14392","volume":"50","author":"R E Tyler","year":"2019","unstructured":"Tyler R E, Kim S W, Guo M, et al. Detecting neuroinflammation in the brain following chronic alcohol exposure in rats: a comparison between in vivo and in vitro TSPO radioligand binding. Eur J Neurosci, 2019, 50: 1831\u20131842","journal-title":"Eur J Neurosci"},{"key":"2857_CR20","doi-asserted-by":"publisher","first-page":"1000","DOI":"10.1111\/adb.12548","volume":"23","author":"W Saba","year":"2018","unstructured":"Saba W, Goutal S, Auvity S, et al. Imaging the neuroimmune response to alcohol exposure in adolescent baboons: a TSPO PET study using (18) F-DPA-714. Addiction Biol, 2018, 23: 1000\u20131009","journal-title":"Addiction Biol"},{"key":"2857_CR21","doi-asserted-by":"publisher","first-page":"1759","DOI":"10.1038\/mp.2017.10","volume":"22","author":"A T Hillmer","year":"2017","unstructured":"Hillmer A T, Sandiego C M, Hannestad J, et al. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol Psychiatry, 2017, 22: 1759\u20131766","journal-title":"Mol Psychiatry"},{"key":"2857_CR22","doi-asserted-by":"publisher","first-page":"996","DOI":"10.1038\/tp.2016.264","volume":"7","author":"N J Kalk","year":"2017","unstructured":"Kalk N J, Guo Q, Owen D, et al. Decreased hippocampal translocator protein (18 kDa) expression in alcohol dependence: a PBR28 PET study. Transl Psychiatry, 2017, 7: 996","journal-title":"Transl Psychiatry"},{"key":"2857_CR23","doi-asserted-by":"publisher","first-page":"1832","DOI":"10.1038\/s41386-018-0085-x","volume":"43","author":"S W Kim","year":"2018","unstructured":"Kim S W, Wiers C E, Tyler R, et al. Influence of alcoholism and cholesterol on TSPO binding in brain: PET PBR28 studies in humans and rodents. Neuropsychopharmacol, 2018, 43: 1832\u20131839","journal-title":"Neuropsychopharmacol"},{"key":"2857_CR24","doi-asserted-by":"publisher","first-page":"160","DOI":"10.1093\/alcalc\/ags121","volume":"48","author":"H Gundersen","year":"2012","unstructured":"Gundersen H, van Wageningen H, Gr\u00fcner R. Alcohol-induced changes in cerebral blood flow and cerebral blood volume in social drinkers. Alcohol Alcoholism, 2012, 48: 160\u2013165","journal-title":"Alcohol Alcoholism"},{"key":"2857_CR25","first-page":"1643","volume":"37","author":"G Ende","year":"2013","unstructured":"Ende G, Hermann D, Demirakca T, et al. Loss of control of alcohol use and severity of alcohol dependence in non-treatment-seeking heavy drinkers are related to lower glutamate in frontal white matter. Alcoholism: Clinical Exp Res, 2013, 37: 1643\u20131649","journal-title":"Alcoholism: Clinical Exp Res"},{"key":"2857_CR26","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1093\/alcalc\/agx119","volume":"53","author":"H Cheng","year":"2018","unstructured":"Cheng H, Kellar D, Lake A, et al. Effects of alcohol cues on MRS glutamate levels in the anterior cingulate. Alcohol Alcoholism, 2018, 53: 209\u2013215","journal-title":"Alcohol Alcoholism"},{"key":"2857_CR27","doi-asserted-by":"publisher","first-page":"817","DOI":"10.15288\/jsad.2014.75.817","volume":"75","author":"D Bagga","year":"2014","unstructured":"Bagga D, Khushu S, Modi S, et al. Impaired visual information processing in alcohol-dependent subjects: a proton magnetic resonance spectroscopy study of the primary visual cortex. J Stud Alcohol Drugs, 2014, 75: 817\u2013826","journal-title":"J Stud Alcohol Drugs"},{"key":"2857_CR28","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/j.drugalcdep.2012.03.012","volume":"125","author":"A Mon","year":"2012","unstructured":"Mon A, Durazzo T C, Meyerhoff D J. Glutamate, GABA, and other cortical metabolite concentrations during early abstinence from alcohol and their associations with neurocognitive changes. Drug Alcohol Dependence, 2012, 125: 27\u201336","journal-title":"Drug Alcohol Dependence"},{"key":"2857_CR29","doi-asserted-by":"publisher","first-page":"1359","DOI":"10.1038\/npp.2011.20","volume":"36","author":"R Thoma","year":"2011","unstructured":"Thoma R, Mullins P, Ruhl D, et al. Perturbation of the glutamate-glutamine system in alcohol dependence and remission. Neuropsychopharmacol, 2011, 36: 1359\u20131365","journal-title":"Neuropsychopharmacol"},{"key":"2857_CR30","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1111\/acer.12928","volume":"40","author":"J P Valenta","year":"2016","unstructured":"Valenta J P, Gonzales R A. Chronic intracerebroventricular infusion of monocyte chemoattractant protein-1 leads to a persistent increase in sweetened ethanol consumption during operant self-administration but does not influence sucrose consumption in long-evans rats. Alcohol Clin Exp Res, 2016, 40: 187\u2013195","journal-title":"Alcohol Clin Exp Res"},{"key":"2857_CR31","doi-asserted-by":"publisher","first-page":"1015","DOI":"10.1016\/j.biopsych.2011.07.034","volume":"71","author":"D Hermann","year":"2012","unstructured":"Hermann D, Weber-Fahr W, Sartorius A, et al. Translational magnetic resonance spectroscopy reveals excessive central glutamate levels during alcohol withdrawal in humans and rats. Biol Psychiatry, 2012, 71: 1015\u20131021","journal-title":"Biol Psychiatry"},{"key":"2857_CR32","doi-asserted-by":"publisher","first-page":"654","DOI":"10.1111\/bpa.12197","volume":"24","author":"N M Zahr","year":"2014","unstructured":"Zahr N M, Mayer D, Rohlfing T, et al. Imaging neuroinflammation? A perspective from MR spectroscopy. Brain Pathol, 2014, 24: 654\u2013664","journal-title":"Brain Pathol"},{"key":"2857_CR33","doi-asserted-by":"publisher","first-page":"650","DOI":"10.1097\/01.ALC.0000121805.12350.CA","volume":"28","author":"D J Meyerhoff","year":"2004","unstructured":"Meyerhoff D J, Blumenfeld R, Truran D, et al. Effects of heavy drinking, binge drinking, and family history of alcoholism on regional brain metabolites. Alcoholism-Clin Exp Res, 2004, 28: 650\u2013661","journal-title":"Alcoholism-Clin Exp Res"},{"key":"2857_CR34","doi-asserted-by":"publisher","first-page":"924","DOI":"10.1111\/j.1530-0277.2001.tb02299.x","volume":"25","author":"B C Schweinsburg","year":"2001","unstructured":"Schweinsburg B C, Taylor M J, Alhassoon O M, et al. Chemical pathology in brain white matter of recently detoxified alcoholics: a 1H magnetic resonance spectroscopy investigation of alcohol-associated frontal lobe injury. Alcoholism Clin Exp Res, 2001, 25: 924\u2013934","journal-title":"Alcoholism Clin Exp Res"},{"key":"2857_CR35","doi-asserted-by":"publisher","first-page":"475","DOI":"10.1007\/s40336-015-0142-y","volume":"3","author":"M Quarantelli","year":"2015","unstructured":"Quarantelli M. MRI\/MRS in neuroinflammation: methodology and applications. Clin Transl Imag, 2015, 3: 475\u2013489","journal-title":"Clin Transl Imag"},{"key":"2857_CR36","first-page":"1926","volume":"22","author":"M Bendszus","year":"2001","unstructured":"Bendszus M, Weijers H G, Wiesbeck G, et al. Sequential MR imaging and proton MR spectroscopy in patients who underwent recent detoxification for chronic alcoholism: correlation with clinical and neuropsychological data. Am J Neuroradiol, 2001, 22: 1926\u20131932","journal-title":"Am J Neuroradiol"},{"key":"2857_CR37","doi-asserted-by":"publisher","first-page":"1368","DOI":"10.1111\/j.1530-0277.2002.tb02681.x","volume":"26","author":"M H Parks","year":"2002","unstructured":"Parks M H, Dawant B M, Riddle W R, et al. Longitudinal brain metabolic characterization of chronic alcoholics with proton magnetic resonance spectroscopy. Alcoholism Clin Exp Res, 2002, 26: 1368\u20131380","journal-title":"Alcoholism Clin Exp Res"},{"key":"2857_CR38","doi-asserted-by":"publisher","first-page":"563","DOI":"10.3389\/fpsyt.2018.00563","volume":"9","author":"R S M de Souza","year":"2018","unstructured":"de Souza R S M, Rosa M, Rodrigues T M, et al. Lower choline rate in the left prefrontal cortex is associated with higher amount of alcohol use in alcohol use disorder. Front Psychiatry, 2018, 9: 563","journal-title":"Front Psychiatry"},{"key":"2857_CR39","doi-asserted-by":"publisher","first-page":"974","DOI":"10.1016\/j.biopsych.2005.05.038","volume":"58","author":"G Ende","year":"2005","unstructured":"Ende G, Welzel H, Walter S, et al. Monitoring the effects of chronic alcohol consumption and abstinence on brain metabolism: a longitudinal proton magnetic resonance spectroscopy study. Biol Psychiatry, 2005, 58: 974\u2013980","journal-title":"Biol Psychiatry"},{"key":"2857_CR40","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1002\/glia.20596","volume":"56","author":"J Haorah","year":"2008","unstructured":"Haorah J, Schall K, Ramirez S H, et al. Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: novel mechanism for neurodegeneration associated with alcohol abuse. Glia, 2008, 56: 78\u201388","journal-title":"Glia"},{"key":"2857_CR41","doi-asserted-by":"publisher","first-page":"455","DOI":"10.1037\/a0027168","volume":"27","author":"M A Monnig","year":"2013","unstructured":"Monnig M A, Caprihan A, Yeo R A, et al. Diffusion tensor imaging of white matter networks in individuals with current and remitted alcohol use disorders and comorbid conditions. Psychol Addictive Behavs, 2013, 27: 455\u2013465","journal-title":"Psychol Addictive Behavs"},{"key":"2857_CR42","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1016\/j.neuroimage.2012.08.057","volume":"64","author":"N D Volkow","year":"2013","unstructured":"Volkow N D, Kim S W, Wang G J, et al. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain. Neuroimage, 2013, 64: 277\u2013283","journal-title":"Neuroimage"},{"key":"2857_CR43","doi-asserted-by":"publisher","first-page":"2070","DOI":"10.1111\/acer.14173","volume":"43","author":"J Tanabe","year":"2019","unstructured":"Tanabe J, Yamamoto D J, Sutton B, et al. Effects of alcohol and acetate on cerebral blood flow: a pilot study. Alcohol Clin Exp Res, 2019, 43: 2070\u20132078","journal-title":"Alcohol Clin Exp Res"},{"key":"2857_CR44","doi-asserted-by":"publisher","first-page":"812","DOI":"10.1111\/acer.13998","volume":"43","author":"K E Courtney","year":"2019","unstructured":"Courtney K E, Infante M A, Brown G G, et al. The relationship between regional cerebral blood flow estimates and alcohol problems at 5-year follow-up: the role of level of response. Alcohol Clin Exp Re, 2019, 43: 812\u2013821","journal-title":"Alcohol Clin Exp Re"},{"key":"2857_CR45","doi-asserted-by":"publisher","first-page":"289","DOI":"10.1159\/000111347","volume":"15","author":"A Brand","year":"1993","unstructured":"Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci, 1993, 15: 289\u2013298","journal-title":"Dev Neurosci"},{"key":"2857_CR46","doi-asserted-by":"publisher","first-page":"576","DOI":"10.1007\/s11481-013-9460-x","volume":"8","author":"L Chang","year":"2013","unstructured":"Chang L, Munsaka S M, Kraft-Terry S, et al. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J Neuroimmune Pharmacol, 2013, 8: 576\u2013593","journal-title":"J Neuroimmune Pharmacol"},{"key":"2857_CR47","first-page":"288","volume":"25","author":"D J Meyerhoff","year":"2001","unstructured":"Meyerhoff D J. Effects of alcohol and HIV infection on the central nervous system. Alcohol Res Health, 2001, 25: 288\u2013298","journal-title":"Alcohol Res Health"},{"key":"2857_CR48","doi-asserted-by":"publisher","first-page":"377","DOI":"10.1016\/S0361-9230(99)00072-6","volume":"49","author":"J W Fawcett","year":"1999","unstructured":"Fawcett J W, Asher R A. The glial scar and central nervous system repair. Brain Res Bull, 1999, 49: 377\u2013391","journal-title":"Brain Res Bull"},{"key":"2857_CR49","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1186\/s12974-015-0332-6","volume":"12","author":"I C M Hoogland","year":"2015","unstructured":"Hoogland I C M, Houbolt C, van Westerloo D J, et al. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation, 2015, 12: 114","journal-title":"J Neuroinflammation"},{"key":"2857_CR50","doi-asserted-by":"publisher","first-page":"407","DOI":"10.1016\/j.bbi.2004.01.004","volume":"18","author":"V H Perry","year":"2004","unstructured":"Perry V H. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurode-generative disease. Brain Behav Immun, 2004, 18: 407\u2013413","journal-title":"Brain Behav Immun"},{"key":"2857_CR51","doi-asserted-by":"publisher","first-page":"1181","DOI":"10.1007\/s12035-014-9070-5","volume":"53","author":"Y Tang","year":"2016","unstructured":"Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol, 2016, 53: 1181\u20131194","journal-title":"Mol Neurobiol"},{"key":"2857_CR52","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1038\/nrn2038","volume":"8","author":"M L Block","year":"2007","unstructured":"Block M L, Zecca L, Hong J S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 2007, 8: 57\u201369","journal-title":"Nat Rev Neurosci"},{"key":"2857_CR53","doi-asserted-by":"publisher","first-page":"1111","DOI":"10.1016\/j.lfs.2008.03.010","volume":"82","author":"I Yawata","year":"2008","unstructured":"Yawata I, Takeuchi H, Doi Y, et al. Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors. Life Sci, 2008, 82: 1111\u20131116","journal-title":"Life Sci"},{"key":"2857_CR54","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1186\/1742-2094-9-97","volume":"9","author":"K Freeman","year":"2012","unstructured":"Freeman K, Brureau A, Vadigepalli R, et al. Temporal changes in innate immune signals in a rat model of alcohol withdrawal in emotional and cardiorespiratory homeostatic nuclei. J Neuroinflammation, 2012, 9: 97","journal-title":"J Neuroinflammation"},{"key":"2857_CR55","doi-asserted-by":"publisher","first-page":"8","DOI":"10.1002\/jlb.60.1.8","volume":"60","author":"M J Sweet","year":"1996","unstructured":"Sweet M J, Hume D A. Endotoxin signal transduction in macrophages. J Leukocyte Biol, 1996, 60: 8\u201326","journal-title":"J Leukocyte Biol"},{"key":"2857_CR56","doi-asserted-by":"publisher","first-page":"867","DOI":"10.1038\/sj.npp.1301468","volume":"33","author":"G R Breese","year":"2008","unstructured":"Breese G R, Knapp D J, Overstreet D H, et al. Repeated lipopolysaccharide (LPS) or cytokine treatments sensitize ethanol withdrawal-induced anxiety-like behavior. Neuropsychopharmacol, 2008, 33: 867\u2013876","journal-title":"Neuropsychopharmacol"},{"key":"2857_CR57","doi-asserted-by":"publisher","first-page":"671","DOI":"10.1016\/j.alcohol.2014.08.003","volume":"48","author":"A Heberlein","year":"2014","unstructured":"Heberlein A, Kaser M, Lichtinghagen R, et al. TNF-alpha and IL-6 serum levels: Neurobiological markers of alcohol consumption in alcohol-dependent patients? Alcohol, 2014, 48: 671\u2013676","journal-title":"Alcohol"},{"key":"2857_CR58","doi-asserted-by":"publisher","first-page":"725","DOI":"10.1016\/j.biopsych.2014.02.003","volume":"76","author":"S Leclercq","year":"2014","unstructured":"Leclercq S, de Saeger C, Delzenne N, et al. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol Psychiatry, 2014, 76: 725\u2013733","journal-title":"Biol Psychiatry"},{"key":"2857_CR59","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1038\/nrn2495","volume":"10","author":"A Nishiyama","year":"2009","unstructured":"Nishiyama A, Komitova M, Suzuki R, et al. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nature Rev Neurosci, 2009, 10: 9\u201322","journal-title":"Nature Rev Neurosci"},{"key":"2857_CR60","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1093\/alcalc\/agn102","volume":"44","author":"C Harper","year":"2009","unstructured":"Harper C. The neuropathology of alcohol-related brain damage. Alcohol Alcoholism, 2009, 44: 136\u2013140","journal-title":"Alcohol Alcoholism"},{"key":"2857_CR61","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1097\/00004728-198905000-00004","volume":"13","author":"M Gallucci","year":"1989","unstructured":"Gallucci M, Amicarelli I, Rossi A, et al. MR imaging of white matter lesions in uncomplicated chronic alcoholism. J Comput Assisted Tomography, 1989, 13: 395\u2013398","journal-title":"J Comput Assisted Tomography"},{"key":"2857_CR62","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1111\/j.1530-0277.2008.00823.x","volume":"33","author":"J He","year":"2009","unstructured":"He J, Overstreet D H, Crews F T. Abstinence from moderate alcohol self-administration alters progenitor cell proliferation and differentiation in multiple brain regions of male and female P rats. Alcoholism-Clin Exp Res, 2009, 33: 129\u2013138","journal-title":"Alcoholism-Clin Exp Res"},{"key":"2857_CR63","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1002\/cne.22018","volume":"514","author":"J L Helfer","year":"2009","unstructured":"Helfer J L, Calizo L H, Dong W K, et al. Binge-like postnatal alcohol exposure triggers cortical gliogenesis in adolescent rats. J Comp Neurol, 2009, 514: 259\u2013271","journal-title":"J Comp Neurol"},{"key":"2857_CR64","doi-asserted-by":"publisher","first-page":"470","DOI":"10.1021\/acschemneuro.6b00056","volume":"7","author":"D S Albrecht","year":"2016","unstructured":"Albrecht D S, Granziera C, Hooker J M, et al. In vivo imaging of human neuroinflammation. ACS Chem Neurosci, 2016, 7: 470\u2013483","journal-title":"ACS Chem Neurosci"},{"key":"2857_CR65","doi-asserted-by":"publisher","first-page":"608","DOI":"10.1016\/j.it.2016.06.006","volume":"37","author":"E Colombo","year":"2016","unstructured":"Colombo E, Farina C. Astrocytes: key regulators of neuroinflammation. Trends Immunol, 2016, 37: 608\u2013620","journal-title":"Trends Immunol"},{"key":"2857_CR66","doi-asserted-by":"publisher","first-page":"1802","DOI":"10.1111\/acer.13168","volume":"40","author":"L Adermark","year":"2016","unstructured":"Adermark L, Bowers M S. Disentangling the role of astrocytes in alcohol use disorder. Alcohol Clin Exp Res, 2016, 40: 1802\u20131816","journal-title":"Alcohol Clin Exp Res"},{"key":"2857_CR67","doi-asserted-by":"publisher","first-page":"6893","DOI":"10.4049\/jimmunol.175.10.6893","volume":"175","author":"A M Blanco","year":"2005","unstructured":"Blanco A M, Vall\u00e9s S L, Pascual M, et al. Involvement of TLR4\/Type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol, 2005, 175: 6893\u20136899","journal-title":"J Immunol"},{"key":"2857_CR68","doi-asserted-by":"publisher","first-page":"2835","DOI":"10.1038\/npp.2014.135","volume":"39","author":"C Bull","year":"2014","unstructured":"Bull C, Freitas K C, Zou S, et al. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacol, 2014, 39: 2835\u20132845","journal-title":"Neuropsychopharmacol"},{"key":"2857_CR69","doi-asserted-by":"publisher","first-page":"164","DOI":"10.1111\/j.1530-0277.1999.tb04039.x","volume":"23","author":"L Korbo","year":"1999","unstructured":"Korbo L. Glial cell loss in the hippocampus of alcoholics. Alcoholism Clinical Exp Res, 1999, 23: 164\u2013168","journal-title":"Alcoholism Clinical Exp Res"},{"key":"2857_CR70","doi-asserted-by":"publisher","first-page":"1845","DOI":"10.1111\/j.1530-0277.2006.00221.x","volume":"30","author":"J J Miguel-Hidalgo","year":"2006","unstructured":"Miguel-Hidalgo J J, Overholser J C, Meltzer H Y, et al. Reduced glial and neuronal packing density in the orbitofrontal cortex in alcohol dependence and its relationship with suicide and duration of alcohol dependence. Alcoholism Clin Exp Res, 2006, 30: 1845\u20131855","journal-title":"Alcoholism Clin Exp Res"},{"key":"2857_CR71","doi-asserted-by":"publisher","first-page":"1845","DOI":"10.1111\/j.1530-0277.2006.00221.x","volume":"30","author":"J J Miguel-Hidalgo","year":"2002","unstructured":"Miguel-Hidalgo J J, Overholser J C, Meltzer H Y, et al. Glia pathology in the prefrontal cortex in alcohol dependence with and without depressive symptoms. Alcoholism Clin Exp Res, 2002, 30: 1845\u20131855","journal-title":"Alcoholism Clin Exp Res"},{"key":"2857_CR72","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.pharmthera.2007.12.004","volume":"118","author":"M K Chen","year":"2008","unstructured":"Chen M K, Guilarte T R. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Therapeutics, 2008, 118: 1\u201317","journal-title":"Pharmacol Therapeutics"},{"key":"2857_CR73","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1016\/j.neuint.2008.10.001","volume":"54","author":"B Guly\u00e1s","year":"2009","unstructured":"Guly\u00e1s B, Makkai B, K\u00e1sa P, et al. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system. NeuroChem Int, 2009, 54: 28\u201336","journal-title":"NeuroChem Int"},{"key":"2857_CR74","doi-asserted-by":"publisher","first-page":"239","DOI":"10.1016\/j.nbd.2012.12.016","volume":"54","author":"S A Marshall","year":"2013","unstructured":"Marshall S A, McClain J A, Kelso M L, et al. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: the importance of microglia phenotype. Neurobiol Dis, 2013, 54: 239\u2013251","journal-title":"Neurobiol Dis"},{"key":"2857_CR75","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1038\/jcbfm.2012.131","volume":"33","author":"W C Kreisl","year":"2013","unstructured":"Kreisl W C, Jenko K J, Hines C S, et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cerebral Blood Flow Metabolism, 2013, 33: 53\u201358","journal-title":"J Cerebral Blood Flow Metabolism"},{"key":"2857_CR76","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1016\/bs.apha.2017.09.004","volume":"82","author":"M Gavish","year":"2018","unstructured":"Gavish M, Veenman L. Regulation of mitochondrial, cellular, and organismal functions by TSPO. Adv Pharmacol, 2018, 82: 103\u2013136","journal-title":"Adv Pharmacol"},{"key":"2857_CR77","doi-asserted-by":"publisher","first-page":"14893","DOI":"10.1038\/ncomms14893","volume":"8","author":"G Jaipuria","year":"2017","unstructured":"Jaipuria G, Leonov A, Giller K, et al. Cholesterol-mediated allosteric regulation of the mitochondrial translocator protein structure. Nat Commun, 2017, 8: 14893","journal-title":"Nat Commun"},{"key":"2857_CR78","first-page":"636","volume":"342","author":"S E Brien","year":"2011","unstructured":"Brien S E, Ronksley P E, Turner B J, et al. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. Biomed J, 2011, 342: d636","journal-title":"Biomed J"},{"key":"2857_CR79","doi-asserted-by":"publisher","first-page":"1921","DOI":"10.1111\/j.1360-0443.2010.03059.x","volume":"105","author":"K G Kahl","year":"2010","unstructured":"Kahl K G, Greggersen W, Schweiger U, et al. Prevalence of the metabolic syndrome in men and women with alcohol dependence: results from a cross-sectional study during behavioural treatment in a controlled environment. Addiction, 2010, 105: 1921\u20131927","journal-title":"Addiction"},{"key":"2857_CR80","doi-asserted-by":"publisher","first-page":"3985","DOI":"10.1042\/BCJ20170648","volume":"474","author":"D R Owen","year":"2017","unstructured":"Owen D R, Fan J, Campioli E, et al. TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis. Biochem J, 2017, 474: 3985\u20133999","journal-title":"Biochem J"},{"key":"2857_CR81","volume-title":"Addiction Biol","author":"C E Wiers","year":"2019","unstructured":"Wiers C E, de Carvalho L M, Hodgkinson C A, et al. TSPO polymorphism in individuals with alcohol use disorder: association with cholesterol levels and withdrawal severity. Addiction Biol, 2019. doi: 10.1111\/adb.12838"},{"key":"2857_CR82","doi-asserted-by":"publisher","first-page":"320","DOI":"10.2967\/jnumed.116.178996","volume":"58","author":"M Ikawa","year":"2017","unstructured":"Ikawa M, Lohith T G, Shrestha S, et al. 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J Nucl Med, 2017, 58: 320\u2013325","journal-title":"J Nucl Med"},{"key":"2857_CR83","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1016\/bs.acc.2016.11.004","volume":"80","author":"S Chakraborty","year":"2017","unstructured":"Chakraborty S, Bhattacharyya R, Banerjee D. Infections: a possible risk factor for type 2 diabetes. Adv Clin Chem, 2017, 80: 227\u2013251","journal-title":"Adv Clin Chem"},{"key":"2857_CR84","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1016\/j.biopsych.2014.09.023","volume":"78","author":"N A Harrison","year":"2015","unstructured":"Harrison N A, Cooper E, Dowell N G, et al. Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain. Biol Psychiatry, 2015, 78: 49\u201357","journal-title":"Biol Psychiatry"},{"key":"2857_CR85","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1016\/j.expneurol.2007.11.017","volume":"210","author":"J He","year":"2008","unstructured":"He J, Crews F T. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol, 2008, 210: 349\u2013358","journal-title":"Exp Neurol"},{"key":"2857_CR86","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1016\/j.bbi.2017.10.027","volume":"72","author":"J L G Coleman","year":"2018","unstructured":"Coleman J L G, Zou J, Qin L, et al. HMGB1\/IL-1\u03b2 complexes regulate neuroimmune responses in alcoholism. Brain Behav Immun, 2018, 72: 61\u201377","journal-title":"Brain Behav Immun"},{"key":"2857_CR87","doi-asserted-by":"publisher","first-page":"315","DOI":"10.1016\/B978-0-12-801284-0.00010-5","volume":"118","author":"F T Crews","year":"2014","unstructured":"Crews F T, Vetreno R P. Neuroimmune basis of alcoholic brain damage. Int Rev Neurobiol, 2014, 118: 315\u2013357","journal-title":"Int Rev Neurobiol"},{"key":"2857_CR88","doi-asserted-by":"publisher","first-page":"3758590","DOI":"10.1155\/2016\/3758590","volume":"2016","author":"S P Neupane","year":"2016","unstructured":"Neupane S P, Skulberg A, Skulberg K R, et al. Cytokine changes following acute ethanol intoxication in healthy men: a crossover study. Mediators Inflamm, 2016, 2016: 3758590","journal-title":"Mediators Inflamm"},{"key":"2857_CR89","doi-asserted-by":"publisher","first-page":"4820","DOI":"10.1523\/JNEUROSCI.0406-09.2009","volume":"29","author":"S Serres","year":"2009","unstructured":"Serres S, Anthony D C, Jiang Y, et al. Systemic inflammatory response reactivates immune-mediated lesions in rat brain. J Neurosci, 2009, 29: 4820\u20134828","journal-title":"J Neurosci"},{"key":"2857_CR90","doi-asserted-by":"publisher","first-page":"544","DOI":"10.1016\/j.nbd.2018.12.018","volume":"124","author":"S B Sankar","year":"2019","unstructured":"Sankar S B, Pybus A F, Liew A, et al. Low cerebral blood flow is a non-invasive biomarker of neuroinflammation after repetitive mild traumatic brain injury. Neurobiol Dis, 2019, 124: 544\u2013554","journal-title":"Neurobiol Dis"},{"key":"2857_CR91","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1038\/npp.2016.199","volume":"42","author":"E Haroon","year":"2017","unstructured":"Haroon E, Miller A H, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacol, 2017, 42: 193\u2013215","journal-title":"Neuropsychopharmacol"},{"key":"2857_CR92","doi-asserted-by":"publisher","first-page":"1401","DOI":"10.1038\/npp.2013.45","volume":"38","author":"J Bauer","year":"2013","unstructured":"Bauer J, Pedersen A, Scherbaum N, et al. Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacol, 2013, 38: 1401\u20131408","journal-title":"Neuropsychopharmacol"},{"key":"2857_CR93","doi-asserted-by":"publisher","first-page":"1325","DOI":"10.1016\/j.addbeh.2004.06.020","volume":"29","author":"P de Witte","year":"2004","unstructured":"de Witte P. Imbalance between neuroexcitatory and neuroinhibitory amino acids causes craving for ethanol. Addictive Behavs, 2004, 29: 1325\u20131339","journal-title":"Addictive Behavs"},{"key":"2857_CR94","doi-asserted-by":"publisher","first-page":"1511","DOI":"10.1097\/WNR.0b013e3282ef7625","volume":"18","author":"E Lee","year":"2007","unstructured":"Lee E, Jang D P, Kim J J, et al. Alteration of brain metabolites in young alcoholics without structural changes. Neuroreport, 2007, 18: 1511\u20131514","journal-title":"Neuroreport"},{"key":"2857_CR95","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1111\/j.1749-6632.2009.05143.x","volume":"1187","author":"S C Licata","year":"2010","unstructured":"Licata S C, Renshaw P F. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann New York Acad Sci, 2010, 1187: 148\u2013171","journal-title":"Ann New York Acad Sci"},{"key":"2857_CR96","doi-asserted-by":"publisher","first-page":"1630","DOI":"10.1002\/nbm.3045","volume":"26","author":"S Ramadan","year":"2013","unstructured":"Ramadan S, Lin A, Stanwell P. Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR Biomed, 2013, 26: 1630\u20131646","journal-title":"NMR Biomed"},{"key":"2857_CR97","first-page":"1069","volume":"67","author":"J C Umhau","year":"2010","unstructured":"Umhau J C, Momenan R, Schwandt M L, et al. Effect of acamprosate on magnetic resonance spectroscopy measures of central glutamate in detoxified alcohol-dependent individuals: a randomized controlled experimental medicine study. JAMA Psychiatry, 2010, 67: 1069\u20131077","journal-title":"JAMA Psychiatry"},{"key":"2857_CR98","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1016\/j.pscychresns.2012.05.005","volume":"211","author":"R A Yeo","year":"2013","unstructured":"Yeo R A, Thoma R J, Gasparovic C, et al. Neurometabolite concentration and clinical features of chronic alcohol use: a proton magnetic resonance spectroscopy study. Psychiatry Res-Neuroimag, 2013, 211: 141\u2013147","journal-title":"Psychiatry Res-Neuroimag"},{"key":"2857_CR99","doi-asserted-by":"publisher","first-page":"2049","DOI":"10.1016\/0024-3205(96)00197-X","volume":"58","author":"L Chang","year":"1996","unstructured":"Chang L, Ernst T, Poland R E, et al. In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci, 1996, 58: 2049\u20132056","journal-title":"Life Sci"},{"key":"2857_CR100","doi-asserted-by":"publisher","first-page":"1638","DOI":"10.1006\/nimg.2002.1254","volume":"17","author":"L Chang","year":"2002","unstructured":"Chang L, Ernst T, Witt M D, et al. Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-na\u00efve HIV patients. Neuroimage, 2002, 17: 1638\u20131648","journal-title":"Neuroimage"},{"key":"2857_CR101","doi-asserted-by":"publisher","first-page":"2135","DOI":"10.1007\/s11064-017-2218-8","volume":"42","author":"J R Schneider","year":"2017","unstructured":"Schneider J R, Bandiera S, Souza D G, et al. N-acetylcysteine prevents alcohol related neuroinflammation in rats. Neurochem Res, 2017, 42: 2135\u20132141","journal-title":"Neurochem Res"},{"key":"2857_CR102","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1002\/nbm.1940040205","volume":"4","author":"B D Ross","year":"1991","unstructured":"Ross B D. Biochemical considerations in 1H spectroscopy. Glutamate and glutamine; Myo-inositol and related metabolites. NMR Biomedicine, 1991, 4: 59\u201363","journal-title":"NMR Biomedicine"},{"key":"2857_CR103","doi-asserted-by":"publisher","first-page":"699","DOI":"10.1111\/j.1530-0277.2000.tb02042.x","volume":"24","author":"B C Schweinsburg","year":"2000","unstructured":"Schweinsburg B C, Taylor M J, Videen J S, et al. Elevated myo-inositol in gray matter of recently detoxified but not long-term abstinent alcoholics: a preliminary MR spectroscopy study. Alcoholism Clin Exp Res, 2000, 24: 699\u2013705","journal-title":"Alcoholism Clin Exp Res"},{"key":"2857_CR104","doi-asserted-by":"publisher","first-page":"4795","DOI":"10.1007\/s00018-015-2038-4","volume":"72","author":"N S de Groot","year":"2015","unstructured":"de Groot N S, Burgas M T. Is membrane homeostasis the missing link between inflammation and neurodegenerative diseases? Cellular Molecular Life Sci, 2015, 72: 4795\u20134805","journal-title":"Cellular Molecular Life Sci"},{"key":"2857_CR105","doi-asserted-by":"publisher","first-page":"782","DOI":"10.1212\/WNL.53.4.782","volume":"53","author":"L Chang","year":"1999","unstructured":"Chang L, Ernst T, Leonido-Yee M, et al. Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology, 1999, 53: 782\u2013782","journal-title":"Neurology"},{"key":"2857_CR106","doi-asserted-by":"publisher","first-page":"100","DOI":"10.1212\/WNL.52.1.100","volume":"52","author":"L Chang","year":"1999","unstructured":"Chang L, Ernst T, Leonido-Yee M, et al. Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology, 1999, 52: 100","journal-title":"Neurology"},{"key":"2857_CR107","doi-asserted-by":"publisher","first-page":"250","DOI":"10.1016\/j.ejrad.2008.02.033","volume":"67","author":"I Mader","year":"2008","unstructured":"Mader I, Rauer S, Gall P, et al. (1)H MR spectroscopy of inflammation, infection and ischemia of the brain. Eur J Rad, 2008, 67: 250\u2013257","journal-title":"Eur J Rad"},{"key":"2857_CR108","first-page":"2015","volume":"24","author":"P G S\u00a8amann","year":"2003","unstructured":"S\u00a8amann P G, Schlegel J, M\u00fcller G, et al. Serial proton MR spectroscopy and diffusion imaging findings in HIV-related herpes simplex encephalitis. Am J Neuroradiol, 2003, 24: 2015","journal-title":"Am J Neuroradiol"},{"key":"2857_CR109","doi-asserted-by":"publisher","first-page":"2815","DOI":"10.1016\/0006-2952(80)90016-7","volume":"29","author":"N M Lee","year":"1980","unstructured":"Lee N M, Friedman H J, Loh H H. Effect of acute and chronic ethanol treatment on rat brain phospholipid turnover. Biochem Pharmacol, 1980, 29: 2815\u20132818","journal-title":"Biochem Pharmacol"},{"key":"2857_CR110","doi-asserted-by":"publisher","first-page":"1584","DOI":"10.1038\/nm.3407","volume":"19","author":"B Obermeier","year":"2013","unstructured":"Obermeier B, Daneman R, Ransohoff R M. Development, maintenance and disruption of the blood-brain barrier. Nat Med, 2013, 19: 1584\u20131596","journal-title":"Nat Med"},{"key":"2857_CR111","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/0304-3940(94)90933-4","volume":"179","author":"W A Banks","year":"1994","unstructured":"Banks W A, Kastin A J, Gutierrez E G. Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett, 1994, 179: 53\u201356","journal-title":"Neurosci Lett"},{"key":"2857_CR112","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1159\/000097202","volume":"2","author":"W A Banks","year":"1995","unstructured":"Banks W A, Kastin A J, Broadwell R D. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation, 1995, 2: 241\u2013248","journal-title":"Neuroimmunomodulation"},{"key":"2857_CR113","doi-asserted-by":"publisher","first-page":"623","DOI":"10.1111\/bpa.12198","volume":"24","author":"M L Estes","year":"2014","unstructured":"Estes M L, McAllister A K. Alterations in immune cells and mediators in the brain: it\u2019s not always neuroinflammation! Brain Pathol, 2014, 24: 623\u2013630","journal-title":"Brain Pathol"},{"key":"2857_CR114","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1097\/RMR.0b013e31802f5df9","volume":"17","author":"F Rebeles","year":"2006","unstructured":"Rebeles F, Fink J, Anzai Y, et al. Blood-brain barrier imaging and therapeutic potentials. Top Magn Reson Imag, 2006, 17: 107\u2013116","journal-title":"Top Magn Reson Imag"},{"key":"2857_CR115","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/0730-725X(85)90006-2","volume":"3","author":"V M Runge","year":"1985","unstructured":"Runge V M, Schoerner W, Niendorf H P, et al. Initial clinical evaluation of gadolinium DTPA for contrast-enhanced magnetic resonance imaging. Magn Reson Imag, 1985, 3: 27\u201335","journal-title":"Magn Reson Imag"},{"key":"2857_CR116","first-page":"408","volume":"40","author":"J Ivanidze","year":"2019","unstructured":"Ivanidze J, Mackay M, Hoang A, et al. Dynamic contrast-enhanced MRI reveals unique blood-brain barrier permeability characteristics in the hippocampus in the normal brain. Am J Neuroradiol, 2019, 40: 408\u2013411","journal-title":"Am J Neuroradiol"},{"key":"2857_CR117","doi-asserted-by":"publisher","first-page":"316","DOI":"10.1016\/j.nurt.2007.05.011","volume":"4","author":"A L Alexander","year":"2007","unstructured":"Alexander A L, Lee J E, Lazar M, et al. Diffusion tensor imaging of the brain. Neurotherapeutics, 2007, 4: 316\u2013329","journal-title":"Neurotherapeutics"},{"key":"2857_CR118","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1016\/j.nbd.2009.07.030","volume":"37","author":"N J Abbott","year":"2010","unstructured":"Abbott N J, Patabendige A A K, Dolman D E M, et al. Structure and function of the blood-brain barrier. NeuroBiol Dis, 2010, 37: 13\u201325","journal-title":"NeuroBiol Dis"},{"key":"2857_CR119","doi-asserted-by":"publisher","first-page":"534","DOI":"10.1002\/jmri.1076","volume":"13","author":"D Le Bihan","year":"2001","unstructured":"Le Bihan D, Mangin J F, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imag, 2001, 13: 534\u2013546","journal-title":"J Magn Reson Imag"},{"key":"2857_CR120","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1007\/s12031-007-0029-0","volume":"34","author":"Y Assaf","year":"2008","unstructured":"Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci, 2008, 34: 51\u201361","journal-title":"J Mol Neurosci"},{"key":"2857_CR121","doi-asserted-by":"publisher","first-page":"637","DOI":"10.1148\/radiology.201.3.8939209","volume":"201","author":"C Pierpaoli","year":"1996","unstructured":"Pierpaoli C, Jezzard P, Basser P J, et al. Diffusion tensor MR imaging of the human brain. Radiology, 1996, 201: 637\u2013648","journal-title":"Radiology"},{"key":"2857_CR122","doi-asserted-by":"publisher","first-page":"865","DOI":"10.1002\/nbm.1515","volume":"23","author":"M Inglese","year":"2010","unstructured":"Inglese M, Bester M. Diffusion imaging in multiple sclerosis: research and clinical implications. NMR Biomed, 2010, 23: 865\u2013872","journal-title":"NMR Biomed"},{"key":"2857_CR123","doi-asserted-by":"publisher","first-page":"208","DOI":"10.1016\/j.neuroimage.2004.07.051","volume":"23","author":"S M Smith","year":"2004","unstructured":"Smith S M, Jenkinson M, Woolrich M W, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 2004, 23: 208\u2013219","journal-title":"Neuroimage"},{"key":"2857_CR124","doi-asserted-by":"publisher","first-page":"1487","DOI":"10.1016\/j.neuroimage.2006.02.024","volume":"31","author":"S M Smith","year":"2006","unstructured":"Smith S M, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 2006, 31: 1487\u20131505","journal-title":"Neuroimage"},{"key":"2857_CR125","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1111\/j.1530-0277.2006.00271.x","volume":"31","author":"C Shiu","year":"2007","unstructured":"Shiu C, Barbier E, Cello F D, et al. HIV-1 gp120 as well as alcohol affect blood-brain barrier permeability and stress fiber formation: involvement of reactive oxygen species. Alcoholism Clin Exp Res, 2007, 31: 130\u2013137","journal-title":"Alcoholism Clin Exp Res"},{"key":"2857_CR126","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1007\/s10571-004-1383-x","volume":"25","author":"M Toborek","year":"2005","unstructured":"Toborek M, Lee Y W, Flora G, et al. Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol, 2005, 25: 181\u2013199","journal-title":"Cell Mol Neurobiol"},{"key":"2857_CR127","doi-asserted-by":"publisher","first-page":"574","DOI":"10.1165\/rcmb.2002-0075OC","volume":"28","author":"I Petrache","year":"2003","unstructured":"Petrache I, Birukova A, Ramirez S I, et al. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol, 2003, 28: 574\u2013581","journal-title":"Am J Respir Cell Mol Biol"},{"key":"2857_CR128","doi-asserted-by":"publisher","first-page":"1119","DOI":"10.1111\/j.1530-0277.1993.tb05217.x","volume":"17","author":"J A Schwartz","year":"1993","unstructured":"Schwartz J A, Speed N M, Gross M D, et al. Acute effects of alcohol administration on regional cerebral blood flow: the role of acetate. Alcoholism Clin Exp Res, 1993, 17: 1119\u20131123","journal-title":"Alcoholism Clin Exp Res"},{"key":"2857_CR129","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1016\/j.neuropharm.2015.09.019","volume":"104","author":"E Beamer","year":"2016","unstructured":"Beamer E, G\u00f6l\u00f6ncs\u00e9r F, Horv\u00e1th G, et al. Purinergic mechanisms in neuroinflammation: an update from molecules to behavior. Neuropharmacology, 2016, 104: 94\u2013104","journal-title":"Neuropharmacology"},{"key":"2857_CR130","doi-asserted-by":"publisher","first-page":"5802","DOI":"10.1523\/JNEUROSCI.0268-10.2010","volume":"30","author":"S S Dai","year":"2010","unstructured":"Dai S S, Zhou Y G, Li W, et al. Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J Neurosci, 2010, 30: 5802\u20135810","journal-title":"J Neurosci"},{"key":"2857_CR131","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1007\/978-3-319-90808-3_9","volume-title":"The Adenosine Receptors","author":"A Ferrante","year":"2018","unstructured":"Ferrante A, de Simone R, Ajmone-Cat M A, et al. Adenosine receptors and neuroinflammation. In: The Adenosine Receptors. Cham: Humana Press, 2018. 217\u2013237"},{"key":"2857_CR132","doi-asserted-by":"publisher","first-page":"1234","DOI":"10.1002\/glia.22285","volume":"60","author":"D Boison","year":"2012","unstructured":"Boison D. Adenosine dysfunction in epilepsy. Glia, 2012, 60: 1234\u20131243","journal-title":"Glia"},{"key":"2857_CR133","volume-title":"Pharmacology and Therapeutics","author":"F da Rocha Lapa","year":"2014","unstructured":"da Rocha Lapa F, J\u00fcnior S J M, Cerutti M L, et al. Pharmacology of adenosine receptors and their signaling role in immunity and inflammation. In: Pharmacology and Therapeutics. New York: IntechOpen, 2014"},{"key":"2857_CR134","doi-asserted-by":"publisher","first-page":"1946","DOI":"10.1016\/S0021-9258(19)39923-5","volume":"265","author":"L E Nagy","year":"1990","unstructured":"Nagy L E, Diamond I, Casso D J, et al. Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nucleoside transporter. J Biol Chem, 1990, 265: 1946\u20131951","journal-title":"J Biol Chem"},{"key":"2857_CR135","doi-asserted-by":"publisher","first-page":"1879","DOI":"10.1523\/JNEUROSCI.2870-12.2014","volume":"34","author":"J Clasadonte","year":"2014","unstructured":"Clasadonte J, McIver S R, Schmitt L I, et al. Chronic sleep restriction disrupts sleep homeostasis and behavioral sensitivity to alcohol by reducing the extracellular accumulation of adenosine. J Neurosci, 2014, 34: 1879\u20131891","journal-title":"J Neurosci"},{"key":"2857_CR136","doi-asserted-by":"publisher","first-page":"525","DOI":"10.5665\/sleep.3490","volume":"37","author":"R Sharma","year":"2014","unstructured":"Sharma R, Sahota P, Thakkar M M. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol. Sleep, 2014, 37: 525\u2013533","journal-title":"Sleep"},{"key":"2857_CR137","doi-asserted-by":"publisher","first-page":"7733","DOI":"10.1523\/JNEUROSCI.1274-14.2014","volume":"34","author":"C E Wiers","year":"2014","unstructured":"Wiers C E. Adenosine sheds light on the relationship between alcohol and sleep. J Neurosci, 2014, 34: 7733\u20137734","journal-title":"J Neurosci"},{"key":"2857_CR138","first-page":"1696","volume":"59","author":"K Ishibashi","year":"2018","unstructured":"Ishibashi K, Tago T, Wagatsuma K, et al. Type 1 metabotropic glutamate receptors measured with a novel PET ligand, 11C-ITMM, in patients with cerebellar ataxia. J Nuclear Med, 2018, 59: 1696","journal-title":"J Nuclear Med"},{"key":"2857_CR139","doi-asserted-by":"publisher","first-page":"9966","DOI":"10.1021\/acs.jmedchem.8b01009","volume":"61","author":"M Guo","year":"2018","unstructured":"Guo M, Gao Z G, Tyler R, et al. Preclinical evaluation of the first adenosine A1 receptor partial agonist radioligand for Positron Emission Tomography imaging. J Med Chem, 2018, 61: 9966\u20139975","journal-title":"J Med Chem"},{"key":"2857_CR140","doi-asserted-by":"publisher","first-page":"6975841","DOI":"10.1155\/2017\/6975841","volume":"2017","author":"A Vuorimaa","year":"2017","unstructured":"Vuorimaa A, Rissanen E, Airas L. In vivo PET imaging of adenosine 2A receptors in neuroinflammatory and neu-rodegenerative disease. Contrast Media Molecular Imag, 2017, 2017: 6975841","journal-title":"Contrast Media Molecular Imag"},{"key":"2857_CR141","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1016\/j.nucmedbio.2016.09.004","volume":"44","author":"S Kreft","year":"2017","unstructured":"Kreft S, Bier D, Holschbach M H, et al. New potent A1 adenosine receptor radioligands for positron emission tomography. Nucl Med Biol, 2017, 44: 69\u201377","journal-title":"Nucl Med Biol"},{"key":"2857_CR142","doi-asserted-by":"publisher","first-page":"8009","DOI":"10.1073\/pnas.1803770115","volume":"115","author":"E M Elmenhorst","year":"2018","unstructured":"Elmenhorst E M, Elmenhorst D, Benderoth S, et al. Cognitive impairments by alcohol and sleep deprivation indicate trait characteristics and a potential role for adenosine A1 receptors. Proc Natl Acad Sci USA, 2018, 115: 8009\u20138014","journal-title":"Proc Natl Acad Sci USA"},{"key":"2857_CR143","first-page":"417","volume":"255","author":"F Carmichael","year":"1988","unstructured":"Carmichael F, Salvida V, Varghese G, et al. Ethanol-induced increase in portal blood flow: role of acetate A1 and A2-adenosine receptors. Am J Physiol, 1988, 255: 417\u2013423","journal-title":"Am J Physiol"},{"key":"2857_CR144","first-page":"495","volume":"254","author":"H Orrego","year":"1988","unstructured":"Orrego H, Carmichael F, Saldiva V, et al. Ethanol-induced increase in portal blood flow: Role of adenosine. Am J Physiol, 1988, 254: 495\u2013501","journal-title":"Am J Physiol"},{"key":"2857_CR145","doi-asserted-by":"publisher","first-page":"435","DOI":"10.1089\/cmb.2017.0149","volume":"25","author":"J Fan","year":"2018","unstructured":"Fan J, Yang J, Jiang Z. Prediction of central nervous system side effects through drug permeability to blood-brain barrier and recommendation algorithm. J Comput Biol, 2018, 25: 435\u2013443","journal-title":"J Comput Biol"},{"key":"2857_CR146","doi-asserted-by":"publisher","first-page":"1974","DOI":"10.4254\/wjh.v7.i16.1974","volume":"7","author":"M Dirchwolf","year":"2015","unstructured":"Dirchwolf M. Role of systemic inflammation in cirrhosis: from pathogenesis to prognosis. World J Hepatol, 2015, 7: 1974\u20131981","journal-title":"World J Hepatol"},{"key":"2857_CR147","doi-asserted-by":"publisher","first-page":"8666","DOI":"10.1038\/s41598-017-09080-w","volume":"7","author":"J V Huang","year":"2017","unstructured":"Huang J V, Schooling C M. Inflammation and bone mineral density: a mendelian randomization study. Sci Rep, 2017, 7: 8666","journal-title":"Sci Rep"},{"key":"2857_CR148","doi-asserted-by":"publisher","first-page":"492","DOI":"10.1016\/S0140-6736(09)60009-X","volume":"373","author":"M A Schuckit","year":"2009","unstructured":"Schuckit M A. Alcohol-use disorders. Lancet, 2009, 373: 492\u2013501","journal-title":"Lancet"},{"key":"2857_CR149","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1016\/S0021-9150(99)00463-3","volume":"48","author":"J S Yudkin","year":"2000","unstructured":"Yudkin J S, Kumari M, Humphries S E, et al. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis, 2000, 48: 209\u2013214","journal-title":"Atherosclerosis"},{"key":"2857_CR150","doi-asserted-by":"publisher","first-page":"139","DOI":"10.3390\/brainsci7100139","volume":"7","author":"E A Barton","year":"2017","unstructured":"Barton E A, Baker C, Leasure J L. Investigation of sex differences in the microglial response to binge ethanol and exercise. Brain Sci, 2017, 7: 139","journal-title":"Brain Sci"},{"key":"2857_CR151","doi-asserted-by":"publisher","first-page":"2070","DOI":"10.1016\/j.bcp.2008.02.024","volume":"75","author":"H P Landolt","year":"2008","unstructured":"Landolt H P. Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol, 2008, 75: 2070\u20132079","journal-title":"Biochem Pharmacol"},{"key":"2857_CR152","doi-asserted-by":"publisher","first-page":"1047","DOI":"10.2174\/156802611795347654","volume":"11","author":"Z L Huang","year":"2011","unstructured":"Huang Z L, Urade Y, Hayaishi O. The role of adenosine in the regulation of sleep. Current Top Med Chem, 2011, 11: 1047\u20131057","journal-title":"Current Top Med Chem"},{"key":"2857_CR153","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1016\/B978-0-12-801022-8.00014-3","volume":"119","author":"Z L Huang","year":"2014","unstructured":"Huang Z L, Zhang Z, Qu W M. Roles of adenosine and its receptors in sleep-wake regulation. Int Rev Neurobiol, 2014, 119: 349\u2013371","journal-title":"Int Rev Neurobiol"},{"key":"2857_CR154","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1186\/s13722-016-0056-7","volume":"11","author":"G A Angarita","year":"2016","unstructured":"Angarita G A, Emadi N, Hodges S, et al. Sleep abnormalities associated with alcohol, cannabis, cocaine, and opiate use: a comprehensive review. Addict Sci Clin Pract, 2016, 11: 9","journal-title":"Addict Sci Clin Pract"},{"key":"2857_CR155","doi-asserted-by":"publisher","first-page":"1341","DOI":"10.1093\/sleep\/32.10.1341","volume":"32","author":"I M Colrain","year":"2009","unstructured":"Colrain I M, Turlington S, Baker F C. Impact of alcoholism on sleep architecture and EEG power spectra in men and women. Sleep, 2009, 32: 1341\u20131352","journal-title":"Sleep"},{"key":"2857_CR156","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1016\/j.copsyc.2019.09.005","volume":"34","author":"B P Hasler","year":"2019","unstructured":"Hasler B P, Pedersen S L. Sleep and circadian risk factors for alcohol problems: a brief overview and proposed mechanisms. Current Opinion Psychol, 2019, 34: 57\u201362","journal-title":"Current Opinion Psychol"},{"key":"2857_CR157","doi-asserted-by":"publisher","first-page":"377","DOI":"10.1016\/j.alcohol.2014.06.010","volume":"49","author":"B P Hasler","year":"2015","unstructured":"Hasler B P, Soehner A M, Clark D B. Sleep and circadian contributions to adolescent alcohol use disorder. Alcohol, 2015, 49: 377\u2013387","journal-title":"Alcohol"},{"key":"2857_CR158","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1053\/smrv.2001.0162","volume":"5","author":"T Roehrs","year":"2001","unstructured":"Roehrs T, Roth T. Sleep, sleepiness, sleep disorders and alcohol use and abuse. Sleep Med Rev, 2001, 5: 287\u2013297","journal-title":"Sleep Med Rev"},{"key":"2857_CR159","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1016\/0960-5428(95)00002-J","volume":"5","author":"D F Dinges","year":"1995","unstructured":"Dinges D F, Douglas S D, Hamarman S, et al. Sleep deprivation and human immune function. Adv Neuroimmunol, 1995, 5: 97\u2013110","journal-title":"Adv Neuroimmunol"},{"key":"2857_CR160","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1007\/s11010-018-3343-7","volume":"449","author":"S Manchanda","year":"2018","unstructured":"Manchanda S, Singh H, Kaur T, et al. Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments. Mol Cell Biochem, 2018, 449: 63\u201372","journal-title":"Mol Cell Biochem"},{"key":"2857_CR161","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1067\/mai.2001.112270","volume":"107","author":"W T Shearer","year":"2001","unstructured":"Shearer W T, Reuben J M, Mullington J M, et al. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol, 2001, 107: 165\u2013170","journal-title":"J Allergy Clin Immunol"},{"key":"2857_CR162","doi-asserted-by":"publisher","first-page":"261","DOI":"10.1093\/sleep\/34.3.261","volume":"34","author":"J P Wisor","year":"2011","unstructured":"Wisor J P, Schmidt M A, Clegern W C. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep, 2011, 34: 261\u2013272","journal-title":"Sleep"},{"key":"2857_CR163","doi-asserted-by":"publisher","first-page":"348","DOI":"10.1016\/j.nbd.2012.06.022","volume":"48","author":"B Zhu","year":"2012","unstructured":"Zhu B, Dong Y, Xu Z, et al. Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiol Dis, 2012, 48: 348\u2013355","journal-title":"Neurobiol Dis"},{"key":"2857_CR164","doi-asserted-by":"publisher","first-page":"813","DOI":"10.1111\/j.1530-0277.2010.01153.x","volume":"34","author":"R Sharma","year":"2010","unstructured":"Sharma R, Engemann S C, Sahota P, et al. Effects of ethanol on extracellular levels of adenosine in the basal forebrain: an in vivo microdialysis study in freely behaving rats. Alcoholism-Clin Exp Res, 2010, 34: 813\u2013818","journal-title":"Alcoholism-Clin Exp Res"},{"key":"2857_CR165","doi-asserted-by":"publisher","first-page":"997","DOI":"10.1111\/j.1530-0277.2010.01174.x","volume":"34","author":"M M Thakkar","year":"2010","unstructured":"Thakkar M M, Engemann S C, Sharma R, et al. Role of wake-promoting basal forebrain and adenosinergic mechanisms in sleep-promoting effects of ethanol. Alcoholism-Clin Exp Res, 2010, 34: 997\u20131005","journal-title":"Alcoholism-Clin Exp Res"},{"key":"2857_CR166","doi-asserted-by":"publisher","first-page":"1117","DOI":"10.1111\/j.1530-0277.2011.01722.x","volume":"36","author":"H W Nam","year":"2012","unstructured":"Nam H W, McIver S R, Hinton D J, et al. Adenosine and glutamate signaling in neuron-glial interactions: implications in alcoholism and sleep disorders. Alcohol Clin Exp Res, 2012, 36: 1117\u20131125","journal-title":"Alcohol Clin Exp Res"},{"key":"2857_CR167","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1016\/B978-0-12-816430-3.00009-9","volume-title":"The Behavioral, Molecular, Pharmacological, and Clinical Basis of the Sleep-Wake Cycle","author":"R Sharma","year":"2019","unstructured":"Sharma R, Sahota P, Thakkar M M. Alcoholism and sleep. In: The Behavioral, Molecular, Pharmacological, and Clinical Basis of the Sleep-Wake Cycle. London: Academic Press, 2019. 159\u2013192"},{"key":"2857_CR168","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1016\/j.bbr.2014.08.029","volume":"274","author":"C M Knapp","year":"2014","unstructured":"Knapp C M, Ciraulo D A, Datta S. Mechanisms underlying sleep-wake disturbances in alcoholism: focus on the cholinergic pedunculopontine tegmentum. Behavioural Brain Res, 2014, 274: 291\u2013301","journal-title":"Behavioural Brain Res"},{"key":"2857_CR169","doi-asserted-by":"publisher","first-page":"2432","DOI":"10.1038\/npp.2014.94","volume":"39","author":"C L Ruby","year":"2014","unstructured":"Ruby C L, Vadnie C A, Hinton D J, et al. Adenosinergic regulation of striatal clock gene expression and ethanol intake during constant light. Neuropsychopharmacol, 2014, 39: 2432\u20132440","journal-title":"Neuropsychopharmacol"},{"key":"2857_CR170","doi-asserted-by":"publisher","first-page":"173","DOI":"10.3389\/fpsyt.2013.00173","volume":"4","author":"E L Garland","year":"2014","unstructured":"Garland E L, Froeliger B, Howard M O. Mindfulness training targets neurocognitive mechanisms of addiction at the attention-appraisal-emotion interface. Front Psychiatry, 2014, 4: 173","journal-title":"Front Psychiatry"},{"key":"2857_CR171","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1176\/jnp.23.2.jnp121","volume":"23","author":"F L Stevens","year":"2011","unstructured":"Stevens F L, Hurley R A, Taber K H. Anterior cingulate cortex: unique role in cognition and emotion. J Neuropsy-chiatry Clinical Neurosci, 2011, 23: 121\u2013125","journal-title":"J Neuropsy-chiatry Clinical Neurosci"},{"key":"2857_CR172","doi-asserted-by":"publisher","first-page":"1731","DOI":"10.1007\/s00213-014-3483-8","volume":"231","author":"A Cheetham","year":"2014","unstructured":"Cheetham A, Allen N B, Whittle S, et al. Volumetric differences in the anterior cingulate cortex prospectively predict alcohol-related problems in adolescence. Psychopharmacology, 2014, 231: 1731\u20131742","journal-title":"Psychopharmacology"},{"key":"2857_CR173","doi-asserted-by":"publisher","first-page":"879","DOI":"10.1016\/j.neuroimage.2006.10.015","volume":"34","author":"V A Cardenas","year":"2007","unstructured":"Cardenas V A, Studholme C, Gazdzinski S, et al. Deformation-based morphometry of brain changes in alcohol dependence and abstinence. Neuroimage, 2007, 34: 879\u2013887","journal-title":"Neuroimage"},{"key":"2857_CR174","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1111\/j.1530-0277.2010.01149.x","volume":"34","author":"S Vollst\u00a8adt-Klein","year":"2010","unstructured":"Vollst\u00a8adt-Klein S, Hermann D, Rabinstein J, et al. Increased activation of the ACC during a spatial working memory task in alcohol-dependence versus heavy social drinking. Alcoholism-Clin Exp Res, 2010, 34: 771\u2013776","journal-title":"Alcoholism-Clin Exp Res"},{"key":"2857_CR175","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1002\/gps.4482","volume":"32","author":"S I Dev","year":"2017","unstructured":"Dev S I, Moore R C, Soontornniyomkij B, et al. Peripheral inflammation related to lower fMRI activation during a working memory task and resting functional connectivity among older adults: a preliminary study. Int J Geriatr Psychiatry, 2017, 32: 341\u2013349","journal-title":"Int J Geriatr Psychiatry"},{"key":"2857_CR176","doi-asserted-by":"publisher","first-page":"7218","DOI":"10.1523\/JNEUROSCI.2574-18.2019","volume":"39","author":"L Passamonti","year":"2019","unstructured":"Passamonti L, Tsvetanov K A, Jones P S, et al. Neuroinflammation and functional connectivity in alzheimer\u2019s disease: interactive influences on cognitive performance. J Neurosci, 2019, 39: 7218\u20137226","journal-title":"J Neurosci"},{"key":"2857_CR177","doi-asserted-by":"publisher","first-page":"1673","DOI":"10.1111\/j.1530-0277.2001.tb02174.x","volume":"25","author":"J O\u2019Neill","year":"2001","unstructured":"O\u2019Neill J, Cardenas V A, Meyerhoff D J. Effects of abstinence on the brain: quantitative magnetic resonance imaging and magnetic resonance spectroscopic imaging in chronic alcohol abuse. Alcoholism Clin Exp Res, 2001, 25: 1673\u20131682","journal-title":"Alcoholism Clin Exp Res"},{"key":"2857_CR178","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1016\/j.expneurol.2008.05.016","volume":"213","author":"E V Sullivan","year":"2008","unstructured":"Sullivan E V, Zahr N M. Neuroinflammation as a neurotoxic mechanism in alcoholism: commentary on \u201cIncreased MCP-1 and microglia in various regions of human alcoholic brain\u201d. Exp Neurology, 2008, 213: 10\u201317","journal-title":"Exp Neurology"},{"key":"2857_CR179","doi-asserted-by":"publisher","first-page":"2198","DOI":"10.1007\/s00259-011-1959-x","volume":"38","author":"A Ciarmiello","year":"2011","unstructured":"Ciarmiello A. Imaging of neuroinflammation. Eur J Nucl Med Mol Imag, 2011, 38: 2198\u20132201","journal-title":"Eur J Nucl Med Mol Imag"},{"key":"2857_CR180","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1038\/jcbfm.1984.48","volume":"4","author":"R M Kessler","year":"1984","unstructured":"Kessler R M, Goble J C, Bird J H, et al. Measurement of blood-brain barrier permeability with positron emission tomography and EDTA. J Cerebral Blood Flow Metabolism, 1984, 4: 323\u2013328","journal-title":"J Cerebral Blood Flow Metabolism"},{"key":"2857_CR181","doi-asserted-by":"publisher","first-page":"1058","DOI":"10.1136\/jnnp.51.8.1058","volume":"51","author":"C Pozzilli","year":"1988","unstructured":"Pozzilli C, Bernardi S, Mansi L, et al. Quantitative assessment of blood-brain barrier permeability in multiple sclerosis using 68-Ga-EDTA and positron emission tomography. J Neurol Neurosurgery Psychiatry, 1988, 51: 1058\u20131062","journal-title":"J Neurol Neurosurgery Psychiatry"},{"key":"2857_CR182","doi-asserted-by":"publisher","first-page":"1161","DOI":"10.1016\/j.neuroscience.2008.10.005","volume":"158","author":"A Wunder","year":"2009","unstructured":"Wunder A, Klohs J, Dirnagl U. Non-invasive visualization of CNS inflammation with nuclear and optical imaging. Neuroscience, 2009, 158: 1161\u20131173","journal-title":"Neuroscience"},{"key":"2857_CR183","doi-asserted-by":"publisher","first-page":"1068","DOI":"10.1111\/acel.12271","volume":"13","author":"A Hafkemeijer","year":"2014","unstructured":"Hafkemeijer A, Altmann-Schneider I, de Craen A J M, et al. Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults. Aging Cell, 2014, 13: 1068\u20131074","journal-title":"Aging Cell"},{"key":"2857_CR184","doi-asserted-by":"publisher","first-page":"1363","DOI":"10.1001\/archneur.65.10.1363","volume":"65","author":"C A Paul","year":"2008","unstructured":"Paul C A, Au R, Fredman L, et al. Association of alcohol consumption with brain volume in the Framingham Study. Archives Neurol, 2008, 65: 1363\u20131367","journal-title":"Archives Neurol"},{"key":"2857_CR185","doi-asserted-by":"publisher","first-page":"1415","DOI":"10.1212\/WNL.0b013e3181f88359","volume":"75","author":"K I Erickson","year":"2010","unstructured":"Erickson K I, Raji C A, Lopez O L, et al. Physical activity predicts gray matter volume in late adulthood: the cardiovascular health study. Neurology, 2010, 75: 1415\u20131422","journal-title":"Neurology"},{"key":"2857_CR186","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1006\/nimg.2001.0786","volume":"14","author":"C D Good","year":"2001","unstructured":"Good C D, Johnsrude I S, Ashburner J, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 2001, 14: 21\u201336","journal-title":"Neuroimage"},{"key":"2857_CR187","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1007\/978-1-4614-4729-0_9","volume-title":"Neural-Immune Interactions in Brain Function and Alcohol Related Disorders","author":"C Guerri","year":"2013","unstructured":"Guerri C, Pascual M. Role of toll-like receptor 4 in alcohol-induced neuroinflammation and behavioral dysfunctions. In: Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Boston: Springer, 2013. 279\u2013306"},{"key":"2857_CR188","doi-asserted-by":"publisher","first-page":"8514","DOI":"10.1073\/pnas.1432609100","volume":"100","author":"S Lehnardt","year":"2003","unstructured":"Lehnardt S, Massillon L, Follett P, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA, 2003, 100: 8514\u20138519","journal-title":"Proc Natl Acad Sci USA"},{"key":"2857_CR189","doi-asserted-by":"publisher","first-page":"1633","DOI":"10.1111\/acer.13138","volume":"40","author":"S L Hagerty","year":"2016","unstructured":"Hagerty S L, Bidwell L C, Harlaar N, et al. An exploratory association study of alcohol use disorder and DNA methylation. Alcohol Clin Exp Res, 2016, 40: 1633\u20131640","journal-title":"Alcohol Clin Exp Res"},{"key":"2857_CR190","doi-asserted-by":"publisher","first-page":"696","DOI":"10.15288\/jsad.2017.78.696","volume":"78","author":"H C Karoly","year":"2017","unstructured":"Karoly H C, Thayer R E, Hagerty S L, et al. TLR4 methylation moderates the relationship between alcohol use severity and gray matter loss. J Stud Alcohol Drugs, 2017, 78: 696\u2013705","journal-title":"J Stud Alcohol Drugs"},{"key":"2857_CR191","doi-asserted-by":"publisher","first-page":"2276","DOI":"10.1002\/hbm.23172","volume":"37","author":"R E Thayer","year":"2016","unstructured":"Thayer R E, Hagerty S L, Sabbineni A, et al. Negative and interactive effects of sex, aging, and alcohol abuse on gray matter morphometry. Hum Brain Mapp, 2016, 37: 2276\u20132292","journal-title":"Hum Brain Mapp"},{"key":"2857_CR192","doi-asserted-by":"publisher","first-page":"101782","DOI":"10.1016\/j.nicl.2019.101782","volume":"22","author":"S J Fede","year":"2019","unstructured":"Fede S J, Grodin E N, Dean S F, et al. Resting state connectivity best predicts alcohol use severity in moderate to heavy alcohol users. Neuroimage Clin, 2019, 22: 101782","journal-title":"Neuroimage Clin"},{"key":"2857_CR193","doi-asserted-by":"publisher","first-page":"690","DOI":"10.1038\/s41467-019-08546-x","volume":"10","author":"E Shokri-Kojori","year":"2019","unstructured":"Shokri-Kojori E, Tomasi D, Alipanahi B, et al. Correspondence between cerebral glucose metabolism and BOLD reveals relative power and cost in human brain. Nat Commun, 2019, 10: 690","journal-title":"Nat Commun"},{"key":"2857_CR194","doi-asserted-by":"publisher","first-page":"513","DOI":"10.3389\/fnhum.2018.00513","volume":"12","author":"Y Wang","year":"2018","unstructured":"Wang Y, Zhao Y, Nie H, et al. Disrupted brain network efficiency and decreased functional connectivity in multi-sensory modality regions in male patients with alcohol use disorder. Front Hum Neurosci, 2018, 12: 513","journal-title":"Front Hum Neurosci"},{"key":"2857_CR195","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1111\/j.1369-1600.2012.00464.x","volume":"18","author":"J P Schacht","year":"2013","unstructured":"Schacht J P, Anton R F, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addiction Biol, 2013, 18: 121\u2013133","journal-title":"Addiction Biol"},{"key":"2857_CR196","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1016\/j.bbi.2011.03.002","volume":"25","author":"R G Agrawal","year":"2011","unstructured":"Agrawal R G, Hewetson A, George C M, et al. Minocycline reduces ethanol drinking. Brain Behavior Immunity, 2011, 25: 165\u2013169","journal-title":"Brain Behavior Immunity"},{"key":"2857_CR197","doi-asserted-by":"publisher","first-page":"382","DOI":"10.1111\/j.1749-6632.1989.tb22624.x","volume":"559","author":"F R George","year":"1989","unstructured":"George F R. The role of arachidonic acid metabolites in mediating ethanol self-administration and intoxication. Ann New York Acad Sci, 1989, 559: 382\u2013391","journal-title":"Ann New York Acad Sci"},{"key":"2857_CR198","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1111\/j.1460-9568.2006.05298.x","volume":"25","author":"M Pascual","year":"2007","unstructured":"Pascual M, Blanco A M, Cauli O, et al. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci, 2007, 25: 541\u2013550","journal-title":"Eur J Neurosci"},{"key":"2857_CR199","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1111\/adb.12106","volume":"20","author":"R L Bell","year":"2015","unstructured":"Bell R L, Lopez M F, Cui C, et al. Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addiction Biol, 2015, 20: 38\u201342","journal-title":"Addiction Biol"},{"key":"2857_CR200","doi-asserted-by":"publisher","first-page":"2251","DOI":"10.1007\/s00213-014-3852-3","volume":"232","author":"K M Franklin","year":"2015","unstructured":"Franklin K M, Hauser S R, Lasek A W, et al. Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4). Psychopharmacology, 2015, 232: 2251\u20132262","journal-title":"Psychopharmacology"},{"key":"2857_CR201","doi-asserted-by":"publisher","first-page":"2157","DOI":"10.1111\/j.1530-0277.2012.01845.x","volume":"36","author":"R T Wen","year":"2012","unstructured":"Wen R T, Zhang M, Qin W J, et al. The phosphodiesterase-4 (PDE4) inhibitor rolipram decreases ethanol seeking and consumption in alcohol-preferring Fawn-Hooded rats. Alcohol Clin Exp Res, 2012, 36: 2157\u20132167","journal-title":"Alcohol Clin Exp Res"},{"key":"2857_CR202","doi-asserted-by":"publisher","first-page":"1776","DOI":"10.1038\/npp.2017.10","volume":"42","author":"L A Ray","year":"2017","unstructured":"Ray L A, Bujarski S, Shoptaw S, et al. Development of the neuroimmune modulator ibudilast for the treatment of alcoholism: a randomized, placebo-controlled, human laboratory trial. Neuropsychopharmacol, 2017, 42: 1776\u20131788","journal-title":"Neuropsychopharmacol"},{"key":"2857_CR203","doi-asserted-by":"publisher","first-page":"1257","DOI":"10.1111\/acer.13416","volume":"41","author":"J Montesinos","year":"2017","unstructured":"Montesinos J, Gil A, Guerri C. Nalmefene prevents alcohol-induced neuroinflammation and alcohol drinking preference in adolescent female mice: role of TLR4. Alcohol Clin Exp Res, 2017, 41: 1257\u20131270","journal-title":"Alcohol Clin Exp Res"},{"key":"2857_CR204","doi-asserted-by":"publisher","first-page":"357","DOI":"10.3109\/07853899009147920","volume":"22","author":"J D Sinclair","year":"1990","unstructured":"Sinclair J D. Drugs to decrease alcohol drinking. Ann Med, 1990, 22: 357\u2013362","journal-title":"Ann Med"},{"key":"2857_CR205","doi-asserted-by":"publisher","first-page":"293","DOI":"10.1159\/000494692","volume":"24","author":"P Castera","year":"2019","unstructured":"Castera P, Stewart E, Grosskopf J, et al. Nalmefene, given as needed, in the routine treatment of patients with alcohol dependence: an interventional, open-label study in primary care. Eur Addict Res, 2019, 24: 293\u2013303","journal-title":"Eur Addict Res"},{"key":"2857_CR206","doi-asserted-by":"publisher","first-page":"1515","DOI":"10.1111\/adb.12425","volume":"22","author":"C S Hendershot","year":"2017","unstructured":"Hendershot C S, Wardell J D, Samokhvalov A V, et al. Effects of naltrexone on alcohol self-administration and craving: meta-analysis of human laboratory studies. Addiction Biol, 2017, 22: 1515\u20131527","journal-title":"Addiction Biol"},{"key":"2857_CR207","doi-asserted-by":"publisher","first-page":"13","DOI":"10.2174\/187152710790966704","volume":"9","author":"L A Ray","year":"2010","unstructured":"Ray L A, Chin P F, Miotto K. Naltrexone for the treatment of alcoholism: clinical findings, mechanisms of action, and pharmacogenetics. CNS Neurol Disorders-Drug Targets, 2010, 9: 13\u201322","journal-title":"CNS Neurol Disorders-Drug Targets"},{"key":"2857_CR208","doi-asserted-by":"publisher","first-page":"235","DOI":"10.3389\/fnagi.2018.00235","volume":"10","author":"S Ramano\u00ebl","year":"2018","unstructured":"Ramano\u00ebl S, Hoyau E, Kauffmann L, et al. Gray matter volume and cognitive performance during normal aging: a voxel-based morphometry study. Front Aging Neurosci, 2018, 10: 235","journal-title":"Front Aging Neurosci"},{"key":"2857_CR209","doi-asserted-by":"publisher","first-page":"966","DOI":"10.1093\/cercor\/bhh057","volume":"14","author":"D J Tisserand","year":"2004","unstructured":"Tisserand D J. A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cerebral Cortex, 2004, 14: 966\u2013973","journal-title":"Cerebral Cortex"},{"key":"2857_CR210","doi-asserted-by":"publisher","first-page":"516","DOI":"10.15288\/jsad.2009.70.516","volume":"70","author":"M Magill","year":"2009","unstructured":"Magill M, Ray L A. Cognitive-behavioral treatment with adult alcohol and illicit drug users: a meta-analysis of randomized controlled trials. J Stud Alcohol Drugs, 2009, 70: 516\u2013527","journal-title":"J Stud Alcohol Drugs"},{"key":"2857_CR211","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1177\/0004867417701996","volume":"51","author":"A L Lopresti","year":"2017","unstructured":"Lopresti A L. Cognitive behaviour therapy and inflammation: a systematic review of its relationship and the potential implications for the treatment of depression. Aust New Zealand J Psychiatry, 2017, 51: 565\u2013582","journal-title":"Aust New Zealand J Psychiatry"},{"key":"2857_CR212","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/j.jsat.2018.01.009","volume":"87","author":"J Gryczynski","year":"2018","unstructured":"Gryczynski J, Schwartz R P, Fishman M J, et al. Integration of transcendental meditation(r) (TM) into alcohol use disorder (AUD) treatment. J Substance Abuse Treatment, 2018, 87: 23\u201330","journal-title":"J Substance Abuse Treatment"},{"key":"2857_CR213","doi-asserted-by":"publisher","first-page":"1095","DOI":"10.1016\/j.bbi.2012.07.006","volume":"26","author":"J D Creswell","year":"2012","unstructured":"Creswell J D, Irwin M R, Burklund L J, et al. Mindfulness-based stress reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial. Brain Behav Immun, 2012, 26: 1095\u20131101","journal-title":"Brain Behav Immun"},{"key":"2857_CR214","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.biopsych.2016.01.008","volume":"80","author":"J D Creswell","year":"2016","unstructured":"Creswell J D, Taren A A, Lindsay E K, et al. Alterations in resting-state functional connectivity link mindfulness meditation with reduced interleukin-6: a randomized controlled trial. Biol Psychiatry, 2016, 80: 53\u201361","journal-title":"Biol Psychiatry"},{"key":"2857_CR215","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1016\/j.bbi.2012.10.009","volume":"27","author":"W B Malarkey","year":"2013","unstructured":"Malarkey W B, Jarjoura D, Klatt M. Workplace based mindfulness practice and inflammation: a randomized trial. Brain Behav Immun, 2013, 27: 145\u2013154","journal-title":"Brain Behav Immun"},{"key":"2857_CR216","doi-asserted-by":"publisher","first-page":"82","DOI":"10.5213\/inj.1938214.107","volume":"23","author":"D Y Seo","year":"2019","unstructured":"Seo D Y, Heo J W, Ko J R, et al. Exercise and neuroinflammation in health and disease. Int Neurourol J, 2019, 23: S82\u201392","journal-title":"Int Neurourol J"},{"key":"2857_CR217","doi-asserted-by":"publisher","first-page":"1058","DOI":"10.1136\/bjsports-2016-096814","volume":"51","author":"M Hallgren","year":"2017","unstructured":"Hallgren M, Vancampfort D, Giesen E S, et al. Exercise as treatment for alcohol use disorders: systematic review and meta-analysis. Br J Sports Med, 2017, 51: 1058\u20131064","journal-title":"Br J Sports Med"}],"container-title":["Science China Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11432-019-2857-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11432-019-2857-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11432-019-2857-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T15:49:08Z","timestamp":1696175348000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11432-019-2857-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5,26]]},"references-count":217,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2020,7]]}},"alternative-id":["2857"],"URL":"https:\/\/doi.org\/10.1007\/s11432-019-2857-5","relation":{},"ISSN":["1674-733X","1869-1919"],"issn-type":[{"type":"print","value":"1674-733X"},{"type":"electronic","value":"1869-1919"}],"subject":[],"published":{"date-parts":[[2020,5,26]]},"assertion":[{"value":"29 November 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 March 2020","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"28 March 2020","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 May 2020","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"170102"}}