{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,12]],"date-time":"2024-08-12T21:56:07Z","timestamp":1723499767722},"reference-count":44,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,1,3]],"date-time":"2023-01-03T00:00:00Z","timestamp":1672704000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,3]],"date-time":"2023-01-03T00:00:00Z","timestamp":1672704000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Wireless Pers Commun"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1007\/s11277-022-10154-w","type":"journal-article","created":{"date-parts":[[2023,1,3]],"date-time":"2023-01-03T10:03:42Z","timestamp":1672740222000},"page":"747-780","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Quantifying Functional Connectivity Network Through Synchronization and Graph Theory Approaches for Seizure Prediction"],"prefix":"10.1007","volume":"129","author":[{"given":"S. R.","family":"Ashokkumar","sequence":"first","affiliation":[]},{"given":"M.","family":"Premkumar","sequence":"additional","affiliation":[]},{"given":"S.","family":"Anupallavi","sequence":"additional","affiliation":[]},{"given":"V.","family":"Jeevanantham","sequence":"additional","affiliation":[]},{"given":"G.","family":"Mohanbabu","sequence":"additional","affiliation":[]},{"given":"A.","family":"Selvapandian","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,3]]},"reference":[{"issue":"2","key":"10154_CR1","doi-asserted-by":"publisher","first-page":"314","DOI":"10.1093\/brain\/awl241","volume":"130","author":"M Florian","year":"2007","unstructured":"Florian, M., Andrzejak, R. G., Elger, C. E., & Lehnertz, K. (2007). Seizure prediction: The long and winding road. Brain, 130(2), 314\u2013333.","journal-title":"Brain"},{"issue":"3","key":"10154_CR2","doi-asserted-by":"publisher","first-page":"469","DOI":"10.1016\/S1388-2457(98)00043-1","volume":"110","author":"L Nunez Paul","year":"1999","unstructured":"Nunez Paul, L., Silberstein, R. B., Shi, Z., Carpenter, M. R., Srinivasan, R., Tucker, D. M., Doran, S. M., Cadusch, P. J., & Wijesinghe, R. S. (1999). EEG coherency II: Experimental comparisons of multiple measures. Clinical Neurophysiology, 110(3), 469\u2013486.","journal-title":"Clinical Neurophysiology"},{"issue":"12","key":"10154_CR3","doi-asserted-by":"publisher","first-page":"1110","DOI":"10.1016\/j.compbiomed.2011.06.020","volume":"41","author":"S Vangelis","year":"2011","unstructured":"Vangelis, S. (2011). Review of advanced techniques for the estimation of brain connectivity measured with EEG\/MEG. Computers in Biology and Medicine, 41(12), 1110\u20131117.","journal-title":"Computers in Biology and Medicine"},{"key":"10154_CR4","doi-asserted-by":"publisher","first-page":"7716","DOI":"10.1109\/ACCESS.2016.2585661","volume":"4","author":"A Sharmila","year":"2016","unstructured":"Sharmila, A., & Geethanjali, P. (2016). DWT based detection of epileptic seizure from EEG signals using naive Bayes and k-NN classifiers. IEEE Access, 4, 7716\u20137727.","journal-title":"IEEE Access"},{"key":"10154_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ijpsycho.2016.02.002","volume":"102","author":"M Antonakakis","year":"2016","unstructured":"Antonakakis, M., Dimitriadis, S. I., Zervakis, M., Micheloyannis, S., Rezaie, R., Babajani-Feremi, A., Zouridakis, G., & Papanicolaou, A. C. (2016). Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury. International Journal of Psychophysiology, 102, 1\u201311.","journal-title":"International Journal of Psychophysiology"},{"key":"10154_CR6","first-page":"1","volume":"4","author":"PK Min","year":"2020","unstructured":"Min, P. K., Cho, K. H., Lee, H.-J., Heo, K., Lee, B. I., & Kim, S. E. (2020). Predicting the antiepileptic drug response by brain connectivity in newly diagnosed focal epilepsy. Journal of Neurology, 4, 1\u20139.","journal-title":"Journal of Neurology"},{"key":"10154_CR7","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1016\/j.cmpb.2018.11.006","volume":"169","author":"A Ahmadi","year":"2019","unstructured":"Ahmadi, A., Davoudi, S., & Daliri, M. R. (2019). Computer Aided Diagnosis System for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention. Computer methods and programs in biomedicine, 169, 9\u201318.","journal-title":"Computer methods and programs in biomedicine"},{"key":"10154_CR8","doi-asserted-by":"publisher","first-page":"4545","DOI":"10.1038\/srep04545","volume":"4","author":"C Alvarado-Rojas","year":"2014","unstructured":"Alvarado-Rojas, C., Valderrama, M., Fouad-Ahmed, A., Feldwisch-Drentrup, H., Ihle, M., Teixeira, C. A., Sales, F., Schulze-Bonhage, A., Adam, C., Dourado, A., & Charpier, S. (2014). Slow modulations of high-frequency activity (40\u2013140 Hz) discriminate preictal changes in human focal epilepsy. Scientific Reports, 4, 4545.","journal-title":"Scientific Reports"},{"issue":"4","key":"10154_CR9","doi-asserted-by":"publisher","first-page":"978","DOI":"10.1002\/ima.22441","volume":"30","author":"SR Ashokkumar","year":"2020","unstructured":"Ashokkumar, S. R., MohanBabu, G., & Anupallavi, S. (2020). A novel two-band equilateral wavelet filter bank method for an automated detection of seizure from EEG signals. International Journal of Imaging Systems and Technology, 30(4), 978\u2013993.","journal-title":"International Journal of Imaging Systems and Technology"},{"key":"10154_CR10","doi-asserted-by":"crossref","unstructured":"Ahmadi, A., Behroozi, M., Shalchyan, V., & Daliri, M. R. (2018). Classification of epileptic EEG signals by wavelet based CFC. In\u00a02018 electric electronics, computer science, biomedical engineerings' meeting (EBBT)\u00a0(pp. 1\u20134). IEEE.","DOI":"10.1109\/EBBT.2018.8391471"},{"key":"10154_CR11","doi-asserted-by":"crossref","unstructured":"Ahmadi, A., Shalchyan, V., & Daliri, M. R. (2017). A new method for epileptic seizure classification in EEG using adapted wavelet packets. In\u00a02017 electric electronics, computer science, biomedical engineerings' meeting (EBBT)\u00a0(pp. 1\u20134). IEEE.","DOI":"10.1109\/EBBT.2017.7956756"},{"key":"10154_CR12","doi-asserted-by":"publisher","first-page":"350","DOI":"10.3389\/fnins.2015.00350","volume":"9","author":"SI Dimitriadis","year":"2015","unstructured":"Dimitriadis, S. I., Laskaris, N. A., Bitzidou, M. P., Tarnanas, I., & Tsolaki, M. N. (2015). A novel biomarker of amnestic MCI based on dynamic cross-frequency coupling patterns during cognitive brain responses. Frontiers in neuroscience, 9, 350.","journal-title":"Frontiers in neuroscience"},{"key":"10154_CR13","doi-asserted-by":"publisher","first-page":"125","DOI":"10.3389\/fnins.2019.00125","volume":"13","author":"Y Salimpour","year":"2019","unstructured":"Salimpour, Y., & Anderson, W. S. (2019). Cross-frequency coupling based neuromodulation for treating neurological disorders. Frontiers in neuroscience, 13, 125.","journal-title":"Frontiers in neuroscience"},{"key":"10154_CR14","doi-asserted-by":"publisher","first-page":"80","DOI":"10.3389\/fnhum.2016.00080","volume":"10","author":"MH Myers","year":"2016","unstructured":"Myers, M. H., Padmanabha, A., Hossain, G., de Jongh Curry, A. L., & Blaha, C. D. (2016). Seizure prediction and detection via phase and amplitude lock values. Frontiers in Human Neuroscience, 10, 80.","journal-title":"Frontiers in Human Neuroscience"},{"issue":"3","key":"10154_CR15","doi-asserted-by":"publisher","first-page":"4037","DOI":"10.1007\/s12652-020-01774-w","volume":"12","author":"S Anupallavi","year":"2021","unstructured":"Anupallavi, S., & MohanBabu, G. (2021). A novel approach based on BSPCI for quantifying functional connectivity pattern of the brain\u2019s region for the classification of epileptic seizure. Journal of Ambient Intelligence and Humanized Computing, 12(3), 4037\u20134047.","journal-title":"Journal of Ambient Intelligence and Humanized Computing"},{"issue":"2","key":"10154_CR16","doi-asserted-by":"publisher","first-page":"466","DOI":"10.1016\/S1053-8119(03)00112-5","volume":"19","author":"H Barry","year":"2003","unstructured":"Barry, H. (2003). The elusive concept of brain connectivity. NeuroImage, 19(2), 466\u2013470.","journal-title":"NeuroImage"},{"issue":"2","key":"10154_CR17","doi-asserted-by":"publisher","first-page":"895","DOI":"10.1002\/ima.22565","volume":"31","author":"SR Ashokkumar","year":"2021","unstructured":"Ashokkumar, S. R., Anupallavi, S., Premkumar, M., & Jeevanantham, V. (2021). Implementation of deep neural networks for classifying electroencephalogram signal using fractional S-transform for epileptic seizure detection. International Journal of Imaging Systems and Technology, 31(2), 895\u2013908.","journal-title":"International Journal of Imaging Systems and Technology"},{"key":"10154_CR18","doi-asserted-by":"publisher","first-page":"112932","DOI":"10.1016\/j.physbeh.2020.112932","volume":"222","author":"A Ahmadi","year":"2020","unstructured":"Ahmadi, A., Davoudi, S., Behroozi, M., & Daliri, M. R. (2020). Decoding covert visual attention based on phase transfer entropy. Physiology & Behavior, 222, 112932.","journal-title":"Physiology & Behavior"},{"issue":"1","key":"10154_CR19","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1016\/j.clinph.2019.10.027","volume":"131","author":"MA Lopes","year":"2020","unstructured":"Lopes, M. A., Junges, L., Tait, L., Terry, J. R., Abela, E., Richardson, M. P., & Goodfellow, M. (2020). Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy. Clinical Neurophysiology, 131(1), 225\u2013234.","journal-title":"Clinical Neurophysiology"},{"key":"10154_CR20","doi-asserted-by":"publisher","first-page":"790","DOI":"10.3389\/fnins.2020.00790","volume":"14","author":"CS Musaeus","year":"2020","unstructured":"Musaeus, C. S., Nielsen, M. S., Musaeus, J. S., & H\u00f8gh, P. (2020). Electroencephalographic cross-frequency coupling as a sign of disease progression in patients with mild cognitive impairment: A pilot study. Frontiers in Neuroscience, 14, 790.","journal-title":"Frontiers in Neuroscience"},{"key":"10154_CR21","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/j.bspc.2017.01.005","volume":"34","author":"AK Jaiswal","year":"2017","unstructured":"Jaiswal, A. K., & Banka, H. (2017). Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals. Biomedical Signal Processing and Control, 34, 81\u201392.","journal-title":"Biomedical Signal Processing and Control"},{"issue":"1","key":"10154_CR22","doi-asserted-by":"publisher","first-page":"233","DOI":"10.3233\/JIFS-191015","volume":"39","author":"SR Ashokkumar","year":"2020","unstructured":"Ashokkumar, S. R., & MohanBabu, G. (2020). Extreme learning adaptive neuro-fuzzy inference system model for classifying the epilepsy using Q-Tuned wavelet transform. Journal of Intelligent & Fuzzy Systems, 39(1), 233\u2013248.","journal-title":"Journal of Intelligent & Fuzzy Systems"},{"issue":"1","key":"10154_CR23","first-page":"1","volume":"15","author":"MS Hossain","year":"2019","unstructured":"Hossain, M. S., Amin, S. U., Alsulaiman, M., & Muhammad, G. (2019). Applying deep learning for epilepsy seizure detection and brain mapping visualization. ACM Transactions on Multimedia Computing, Communications and Applications (TOMM), 15(1), 1\u201317.","journal-title":"ACM Transactions on Multimedia Computing, Communications and Applications (TOMM)"},{"key":"10154_CR24","doi-asserted-by":"crossref","unstructured":"Ashokkumar, S. R., Anupallavi, S., MohanBabu, G., Premkumar, M., & Jeevanantham, V. (2022). Emotion identification by dynamic entropy and ensemble learning from electroencephalogram signals. International Journal of Imaging Systems and Technology, 32(1), 402\u2013413.","DOI":"10.1002\/ima.22670"},{"issue":"3\u20134","key":"10154_CR25","doi-asserted-by":"publisher","first-page":"358","DOI":"10.1016\/S0167-2789(00)00087-7","volume":"144","author":"F Mormann","year":"2000","unstructured":"Mormann, F., Lehnertz, K., David, P., & Elger, C. E. (2000). Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 144(3\u20134), 358\u2013369.","journal-title":"Physica D: Nonlinear Phenomena"},{"issue":"12","key":"10154_CR26","doi-asserted-by":"publisher","first-page":"123130","DOI":"10.1063\/5.0021420","volume":"30","author":"M Gerster","year":"2020","unstructured":"Gerster, M., Berner, R., Sawicki, J., Zakharova, A., \u0160koch, A., Hlinka, J., Lehnertz, K., & Sch\u00f6ll, E. (2020). FitzHugh\u2013Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(12), 123130.","journal-title":"Chaos: An Interdisciplinary Journal of Nonlinear Science"},{"key":"10154_CR27","doi-asserted-by":"crossref","unstructured":"Imperatori, C., Farina, B., Quintiliani, M. I., Onofri, A., Gattinara, P. C., Lepore, M., et al. (2014). Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: A sLORETA study. Biological Psychology, 102, 10\u201317.","DOI":"10.1016\/j.biopsycho.2014.07.011"},{"key":"10154_CR28","doi-asserted-by":"crossref","unstructured":"Sharma, M., & Pachori, R. B. (2017). A novel approach to detect epileptic seizures using a combination of tunable-Q wavelet transform and fractal dimension. Journal of Mechanics in Medicine and Biology, 17(07), 1740003.","DOI":"10.1142\/S0219519417400036"},{"issue":"1","key":"10154_CR29","first-page":"74","volume":"12","author":"S Abdulla","year":"2022","unstructured":"Abdulla, S., Diykh, M., Alkhafaji, S. K., Greena, J. H., Al-Hadeethi, H., Oudah, A. Y., & Marhoon, H. A. (2022). Determinant of covariance matrix model coupled with AdaBoost classification algorithm for EEG seizure detection. Diagnostics, 12(1), 74.","journal-title":"Diagnostics"},{"issue":"1","key":"10154_CR30","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40101-017-0136-8","volume":"36","author":"L Hussain","year":"2017","unstructured":"Hussain, L., Aziz, W., Alowibdi, J. S., Habib, N., Rafique, M., Saeed, S., & Kazmi, S. Z. H. (2017). Symbolic time series analysis of electroencephalographic (EEG) epileptic seizure and brain dynamics with eye-open and eye-closed subjects during resting states. Journal of physiological anthropology, 36(1), 1\u201312.","journal-title":"Journal of physiological anthropology"},{"issue":"5","key":"10154_CR31","doi-asserted-by":"publisher","first-page":"056043","DOI":"10.1088\/1741-2552\/abc024","volume":"17","author":"N Feng","year":"2020","unstructured":"Feng, N., Hu, F., Wang, H., & Gouda, M. A. (2020). Decoding of voluntary and involuntary upper-limb motor imagery based on graph fourier transform and cross-frequency coupling coefficients. Journal of Neural Engineering, 17(5), 056043.","journal-title":"Journal of Neural Engineering"},{"issue":"4","key":"10154_CR32","doi-asserted-by":"publisher","first-page":"385","DOI":"10.3390\/app7040385","volume":"7","author":"A Bhattacharyya","year":"2017","unstructured":"Bhattacharyya, A., Pachori, R., Upadhyay, A., & Acharya, U. (2017). Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals. Applied Sciences, 7(4), 385.","journal-title":"Applied Sciences"},{"key":"10154_CR33","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1016\/j.eswa.2019.03.021","volume":"127","author":"S Raghu","year":"2019","unstructured":"Raghu, S., Sriraam, N., Hegde, A. S., & Kubben, P. L. (2019). A novel approach for classification of epileptic seizures using matrix determinant. Expert Systems with Applications, 127, 323\u2013341.","journal-title":"Expert Systems with Applications"},{"issue":"May","key":"10154_CR34","doi-asserted-by":"publisher","first-page":"101569","DOI":"10.1016\/j.bspc.2019.101569","volume":"53","author":"V Gupta","year":"2019","unstructured":"Gupta, V., & Pachori, R. B. (2019). Epileptic seizure identification using entropy of FBSE based EEG rhythms. Biomedical Signal Processing and Control, 53(May), 101569.","journal-title":"Biomedical Signal Processing and Control"},{"key":"10154_CR35","doi-asserted-by":"publisher","first-page":"105333","DOI":"10.1016\/j.knosys.2019.105333","volume":"191","author":"AR Hassan","year":"2020","unstructured":"Hassan, A. R., Subasi, A., & Zhang, Y. (2020). Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise. Knowledge Based Systems, 191, 105333.","journal-title":"Knowledge Based Systems"},{"issue":"3","key":"10154_CR36","doi-asserted-by":"publisher","first-page":"170","DOI":"10.7555\/JBR.34.20190006","volume":"34","author":"DP Dash","year":"2020","unstructured":"Dash, D. P., & Kolekar, M. H. (2020). Hidden Markov model based epileptic seizure detection using tunable Q wavelet transform. Journal of Biomedical Research, 34(3), 170.","journal-title":"Journal of Biomedical Research"},{"key":"10154_CR37","doi-asserted-by":"crossref","unstructured":"Park, C., Choi, G., Kim, J., Kim, S., Kim, T. J., Min, K., Jung, K. Y., Chong, J. (2018). Epileptic seizure detection for multi-channel EEG with deep convolutional neural network. In ICEIC 2018: IEEE international conference on electronics, information, and communication (pp. 1\u20135).","DOI":"10.23919\/ELINFOCOM.2018.8330671"},{"issue":"2020","key":"10154_CR38","doi-asserted-by":"publisher","first-page":"102255","DOI":"10.1016\/j.bspc.2020.102255","volume":"64","author":"M Chakraborty Sukriti","year":"2021","unstructured":"Chakraborty Sukriti, M., & Mitra, D. (2021). Epilepsy seizure detection using kurtosis based VMD\u2019s parameters selection and bandwidth features. Biomedical Signal Processing and Control, 64(2020), 102255.","journal-title":"Biomedical Signal Processing and Control"},{"issue":"2","key":"10154_CR39","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1016\/j.irbm.2018.12.002","volume":"40","author":"G Chandel","year":"2019","unstructured":"Chandel, G., Upadhyaya, P., Farooq, O., & Khan, Y. U. (2019). Detection of seizure event and its Onset_Offset using orthonormal triadic wavelet based features. IRBM, 40(2), 103\u2013112.","journal-title":"IRBM"},{"key":"10154_CR40","doi-asserted-by":"publisher","first-page":"104338","DOI":"10.1016\/j.compbiomed.2021.104338","volume":"132","author":"H Peng","year":"2021","unstructured":"Peng, H., et al. (2021). Automatic epileptic seizure detection via Stein kernel-based sparse representation. Computers in Biology and Medicine, 132, 104338.","journal-title":"Computers in Biology and Medicine"},{"key":"10154_CR41","doi-asserted-by":"publisher","first-page":"103075","DOI":"10.1016\/j.micpro.2020.103075","volume":"76","author":"R Mouleeshuwarapprabu","year":"2020","unstructured":"Mouleeshuwarapprabu, R., & Kasthuri, N. (2020). Nonlinear vector decomposed neural network based EEG signal feature extraction and detection of seizure. Microprocessors and Microsystems, 76, 103075.","journal-title":"Microprocessors and Microsystems"},{"key":"10154_CR42","doi-asserted-by":"publisher","DOI":"10.1016\/j.micpro.2020.103370","author":"BP Prathaban","year":"2020","unstructured":"Prathaban, B. P., & Balasubramanian, R. (2020). Prediction of epileptic seizures using grey wolf optimized model driven mathematical approach. Microprocessors and Microsystems. https:\/\/doi.org\/10.1016\/j.micpro.2020.103370","journal-title":"Microprocessors and Microsystems"},{"key":"10154_CR43","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1016\/j.bspc.2017.02.001","volume":"34","author":"E BouAssi","year":"2017","unstructured":"BouAssi, E., Nguyen, D. K., Rihana, S., & Sawan, M. (2017). Towards accurate prediction of epileptic seizures: A review. Biomedical Signal Processing and Control, 34, 144\u2013157.","journal-title":"Biomedical Signal Processing and Control"},{"issue":"5","key":"10154_CR44","doi-asserted-by":"publisher","first-page":"2161","DOI":"10.1016\/j.clinph.2016.02.008","volume":"127","author":"C Robbie Joel","year":"2016","unstructured":"Robbie Joel, C., Clarke, A. R., Barry, R. J., Dupuy, F. E., McCarthy, R., & Selikowitz, M. (2016). Coherence in children with AD\/HD and excess alpha power in their EEG. Clinical Neurophysiology, 127(5), 2161\u20132166.","journal-title":"Clinical Neurophysiology"}],"container-title":["Wireless Personal Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11277-022-10154-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11277-022-10154-w\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11277-022-10154-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,7]],"date-time":"2023-03-07T10:32:33Z","timestamp":1678185153000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11277-022-10154-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,3]]},"references-count":44,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,3]]}},"alternative-id":["10154"],"URL":"https:\/\/doi.org\/10.1007\/s11277-022-10154-w","relation":{},"ISSN":["0929-6212","1572-834X"],"issn-type":[{"value":"0929-6212","type":"print"},{"value":"1572-834X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,1,3]]},"assertion":[{"value":"9 December 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 January 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}