{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,11,26]],"date-time":"2022-11-26T05:12:20Z","timestamp":1669439540546},"reference-count":42,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2021,6,29]],"date-time":"2021-06-29T00:00:00Z","timestamp":1624924800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,6,29]],"date-time":"2021-06-29T00:00:00Z","timestamp":1624924800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Wireless Pers Commun"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1007\/s11277-021-08699-3","type":"journal-article","created":{"date-parts":[[2021,6,29]],"date-time":"2021-06-29T20:02:27Z","timestamp":1624996947000},"page":"1453-1477","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Recommender System for Optimal Distributed Deep Learning in Cloud Datacenters"],"prefix":"10.1007","volume":"127","author":[{"given":"Muhammad Hassaan","family":"Anwar","sequence":"first","affiliation":[]},{"given":"Saeid","family":"Ghafouri","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3913-0369","authenticated-orcid":false,"given":"Sukhpal Singh","family":"Gill","sequence":"additional","affiliation":[]},{"given":"Joseph","family":"Doyle","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,6,29]]},"reference":[{"key":"8699_CR1","unstructured":"Anavinahar. (2020). Azure Virtual Network. Available from https:\/\/docs.microsoft.com\/en-us\/azure\/virtual-network\/virtual-networks-overview. Accessed 25 August 2020."},{"key":"8699_CR2","doi-asserted-by":"publisher","first-page":"59","DOI":"10.4018\/978-1-5225-9023-1.ch005","volume-title":"Novel practices and trends in grid and cloud computing","author":"S Annamalai","year":"2019","unstructured":"Annamalai, S., Udendhran, R., & Vimal, S. (2019). An intelligent grid network based on cloud computing infrastructures. Novel practices and trends in grid and cloud computing (pp. 59\u201373). United States: IGI Global."},{"key":"8699_CR3","doi-asserted-by":"publisher","first-page":"74","DOI":"10.4018\/978-1-5225-9023-1.ch006","volume-title":"Novel practices and trends in grid and cloud computing","author":"S Annamalai","year":"2019","unstructured":"Annamalai, S., Udendhran, R., & Vimal, S. (2019). Cloud-based predictive maintenance and machine monitoring for intelligent manufacturing for automobile industry. Novel practices and trends in grid and cloud computing (pp. 74\u201389). United States: IGI Global."},{"key":"8699_CR4","unstructured":"AWS. (2020a). Amazon EC2. Available from https:\/\/aws.amazon.com\/ec2\/. Accessed 25 August 2020."},{"key":"8699_CR5","unstructured":"AWS. (2020b). Amazon Virtual Private Cloud (VPC). Available from https:\/\/aws.amazon.com\/vpc\/. Accessed 25 August 2020."},{"key":"8699_CR6","unstructured":"Bonawitz, K., et al. (2019). Towards federated learning at scale: system design. System Design, 15."},{"key":"8699_CR7","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-7908-2604-3_16","volume-title":"Large-Scale Machine Learning with Stochastic Gradient Descent","author":"L Bottou","year":"2010","unstructured":"Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent. Heidelberg: Physica-Verlag HD."},{"key":"8699_CR8","unstructured":"Chen, T., et al. (2016). MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. 6."},{"key":"8699_CR9","unstructured":"CIFAR-10. (2020). Available from https:\/\/www.cs.toronto.edu\/~kriz\/cifar.html. Accessed 31 August 2020."},{"key":"8699_CR10","doi-asserted-by":"crossref","unstructured":"Doyle, J., O'Mahony, D., and Shorten, R. (2011). Server selection for carbon emission control. In Proceedings of the 2nd ACM SIGCOMM workshop on Green networking (pp. 1\u20136).","DOI":"10.1145\/2018536.2018538"},{"key":"8699_CR11","doi-asserted-by":"publisher","unstructured":"Feng, M., Xiang, B., and Zhou, B. (2016). Distributed Deep Learning for Question Answering. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. 2413\u20132416. https:\/\/doi.org\/10.1145\/2983323.2983377","DOI":"10.1145\/2983323.2983377"},{"issue":"4","key":"8699_CR12","doi-asserted-by":"publisher","first-page":"2689","DOI":"10.1007\/s10586-019-03037-6","volume":"23","author":"X Geng","year":"2020","unstructured":"Geng, X., et al. (2020). Interference-aware parallelization for deep learning workload in GPU cluster. Cluster Computing, 23(4), 2689\u20132702. https:\/\/doi.org\/10.1007\/s10586-019-03037-6","journal-title":"Cluster Computing"},{"key":"8699_CR13","doi-asserted-by":"publisher","first-page":"100118","DOI":"10.1016\/j.iot.2019.100118","volume":"8","author":"SS Gill","year":"2019","unstructured":"Gill, S. S., Tuli, S., Xu, M., et al. (2019). Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges. Internet of Things, 8, 100118.","journal-title":"Internet of Things"},{"key":"8699_CR14","doi-asserted-by":"publisher","first-page":"110596","DOI":"10.1016\/j.jss.2020.110596","volume":"166","author":"SS Gill","year":"2020","unstructured":"Gill, S. S., Tuli, S., Toosi, A. N., Cuadrado, F., Garraghan, P., Bahsoon, R., & Buyya, R. (2020). ThermoSim: deep learning based framework for modeling and simulation of thermal-aware resource management for cloud computing environments. Journal of Systems and Software, 166, 110596.","journal-title":"Journal of Systems and Software"},{"key":"8699_CR15","unstructured":"Goyal, P., et al. (2018). Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv:1706.02677. Available from http:\/\/arxiv.org\/abs\/1706.02677. Accessed 23 August 2020."},{"key":"8699_CR16","doi-asserted-by":"publisher","first-page":"671","DOI":"10.1016\/j.renene.2015.11.073","volume":"89","author":"J Heinermann","year":"2016","unstructured":"Heinermann, J., & Kramer, O. (2016). Machine learning ensembles for wind power prediction. Renewable Energy, 89, 671\u2013679. https:\/\/doi.org\/10.1016\/j.renene.2015.11.073","journal-title":"Renewable Energy"},{"key":"8699_CR17","unstructured":"Hemminger, S. (2005). Network emulation with NetEm. 9."},{"key":"8699_CR18","doi-asserted-by":"crossref","unstructured":"Hong, R., and Chandra, A. (2019). DLion: decentralized distributed deep learning in micro-clouds. 9.","DOI":"10.1145\/3267809.3275447"},{"key":"8699_CR19","unstructured":"Hsieh, K., et al. (2017). Gaia: geo-distributed machine learning approaching LAN speeds. 21."},{"key":"8699_CR20","unstructured":"Inside TensorFlow: tf.data + tf.distribute. (2020). Available from https:\/\/www.youtube.com\/watch?v=ZnukSLKEw34. Accessed 24 August 2020."},{"key":"8699_CR21","unstructured":"Jin, P.H., et al. (2016). How to scale distributed deep learning?. arXiv:1611.04581. Available from http:\/\/arxiv.org\/abs\/1611.04581. Accessed 10 April 2021."},{"key":"8699_CR22","unstructured":"Keras Team, K. (2020). Keras documentation: MNIST digits classification dataset. Available from https:\/\/keras.io\/api\/datasets\/mnist\/. Accessed 24 August 2020."},{"key":"8699_CR23","unstructured":"Keras: the Python deep learning API. (2020). Available from https:\/\/keras.io\/. Accessed 24 August 2020."},{"key":"8699_CR24","doi-asserted-by":"crossref","unstructured":"Keuper, J., and Preundt, F.J. (2016). Distributed training of deep neural networks: theoretical and practical limits of parallel scalability. arXiv:1609.06870. Available from http:\/\/arxiv.org\/abs\/1609.06870. Accessed 24 August 2020.","DOI":"10.1109\/MLHPC.2016.006"},{"key":"8699_CR25","unstructured":"Koloskova, A., Stich, S.U., and Jaggi, M. (2019). Decentralized stochastic optimization and gossip algorithms with compressed communication. 10."},{"key":"8699_CR26","unstructured":"Lian, X., et al. (2017). Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. 11."},{"key":"8699_CR27","unstructured":"Mahajan, K., Balasubramanian, A., Singhvi, A., Venkataraman, S., Akella, A., Phanishayee, A., & Chawla, S. (2020). Themis: fair and efficient {GPU} cluster scheduling. In 17th {USENIX} symposium on networked systems design and implementation ({NSDI} 20) (pp. 289\u2013304"},{"key":"8699_CR28","unstructured":"Microsoft. (2020). Virtual Machines (VMs) for Linux and Windows | Microsoft Azure. Available from https:\/\/azure.microsoft.com\/en-us\/services\/virtual-machines\/. Accessed 25 August 2020."},{"key":"8699_CR29","unstructured":"Mohri, M., Sivek, G., and Suresh, A.T. (2019). Agnostic federated learning. 30."},{"key":"8699_CR30","unstructured":"Moritz, P., et al. (2016). Ray: a distributed framework for emerging AI applications. 18."},{"key":"8699_CR31","doi-asserted-by":"crossref","unstructured":"Natu, V., and Ghosh, R. (2019). EasyDist: An End-to-End distributed deep learning tool for cloud. Proceedings of the ACM India joint international conference on data science and management of data CoDS-COMAD 19. ACM Press, Kolkata, India","DOI":"10.1145\/3297001.3297037"},{"key":"8699_CR32","volume-title":"Fault-Tolerant Real-Time Systems","author":"S Poledna","year":"2007","unstructured":"Poledna, S. (2007). Fault-Tolerant Real-Time Systems. New York: Springer Science & Business Media."},{"key":"8699_CR33","unstructured":"Recht, B., et al. (2011). Hogwild: A lock-free approach to parallelizing stochastic gradient descent. 9."},{"key":"8699_CR34","unstructured":"Simonyan, K., and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556. Available from http:\/\/arxiv.org\/abs\/1409.1556. Accessed 24 August 2020."},{"key":"8699_CR35","unstructured":"TensorFlow. (2020). tf.distribute.StrategyExtended, TensorFlow Core v2.3.0. TensorFlow. Available from https:\/\/www.tensorflow.org\/api_docs\/python\/tf\/distribute\/StrategyExtended. Accessed 26 August 2020."},{"key":"8699_CR36","unstructured":"TensorFlow Org. (2020). Distributed training with TensorFlow, TensorFlow Core. TensorFlow. Available from https:\/\/www.tensorflow.org\/guide\/distributed_training. Accessed 24 August 2020."},{"issue":"5","key":"8699_CR37","doi-asserted-by":"publisher","first-page":"e198","DOI":"10.1002\/itl2.198","volume":"3","author":"S Tuli","year":"2020","unstructured":"Tuli, S., Gill, S. S., Casale, G., & Jennings, N. R. (2020). iThermoFog: IoT-Fog based automatic thermal profile creation for cloud data centers using artificial intelligence techniques. Internet Technology Letters, 3(5), e198.","journal-title":"Internet Technology Letters"},{"key":"8699_CR38","doi-asserted-by":"crossref","unstructured":"Tuli, S., Poojara, S., Srirama, S.N., Casale, G., and Jennings, N.R. (2021). COSCO: container orchestration using co-simulation and gradient based optimization for fog computing environments. arXiv preprint. arXiv:2104.14392.","DOI":"10.1109\/TPDS.2021.3087349"},{"key":"8699_CR39","doi-asserted-by":"publisher","first-page":"103785","DOI":"10.1016\/j.engappai.2020.103785","volume":"94","author":"Veeramanikandan","year":"2020","unstructured":"Veeramanikandan, et al. (2020). Data Flow and Distributed Deep Neural Network based low latency IoT-Edge computation model for big data environment. Engineering Applications of Artificial Intelligence, 94, 103785. https:\/\/doi.org\/10.1016\/j.engappai.2020.103785","journal-title":"Engineering Applications of Artificial Intelligence"},{"key":"8699_CR40","doi-asserted-by":"crossref","unstructured":"Xu, L., Xu, M., Semmes, R., Li, H., Mu, H., Gui, S., ... & Buyya, R. (2020). A Reinforcement Learning Based Approach to Identify Resource Bottlenecks for Multiple Services Interactions in Cloud Computing Environments. In International Conference on Collaborative Computing: Networking, Applications and Worksharing (pp. 58\u201374). Springer, Cham.","DOI":"10.1007\/978-3-030-67540-0_4"},{"key":"8699_CR41","doi-asserted-by":"publisher","first-page":"106328","DOI":"10.1016\/j.asoc.2020.106328","volume":"92","author":"L Zhang","year":"2020","unstructured":"Zhang, L., & Lim, C. P. (2020). Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models. Applied Soft Computing, 92, 106328. https:\/\/doi.org\/10.1016\/j.asoc.2020.106328","journal-title":"Applied Soft Computing"},{"key":"8699_CR42","doi-asserted-by":"publisher","unstructured":"Zhang, Z. et al. (2018). A Quick Survey on Large Scale Distributed Deep Learning Systems. In IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS). Singapore, 1052\u20131056. https:\/\/doi.org\/10.1109\/PADSW.2018.8644613","DOI":"10.1109\/PADSW.2018.8644613"}],"container-title":["Wireless Personal Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11277-021-08699-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11277-021-08699-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11277-021-08699-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,25]],"date-time":"2022-11-25T12:16:42Z","timestamp":1669378602000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11277-021-08699-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,29]]},"references-count":42,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2022,11]]}},"alternative-id":["8699"],"URL":"https:\/\/doi.org\/10.1007\/s11277-021-08699-3","relation":{},"ISSN":["0929-6212","1572-834X"],"issn-type":[{"value":"0929-6212","type":"print"},{"value":"1572-834X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,6,29]]},"assertion":[{"value":"23 June 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 June 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"On behalf of all authors, the corresponding author states that there is no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest"}}]}}